Skip to main content

Simulating light scattering from micron-sized particles

A parallel fast Discrete Dipole approximation

  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1067))

Included in the following conference series:

Abstract

Employing the combination of a kernel with low computational complexity, implemented on powerful HPC systems, we are now able to push the limits of simulation of light scattering from arbitrary particles towards particles with dimensions up to 10 micrometer. This allows for the first time the simulation of realistic and highly relevant light scattering experiments, such as scattering from human white blood cells, or scattering from large soot — or dust particles. We use the Discrete Dipole Approximation to simulate the light scattering process. In this paper we report on a parallel Fast Discrete Dipole Approximation, and we will show the performance of the resulting code, running under PVM on a 32-node Parsytec PowerXplorer. Furthermore, we present results of a simulation of scattering from a model of a small Human White Blood Cell. This model is the largest possible particle fitting in memory of our parallel computer, and contains 1.1 million dipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M.A. Sloot, A.G. Hoekstra, H. van der Liet, and C.G. Figdor, Applied Optics 28, 1752 (1989).

    Google Scholar 

  2. B.G. Grooth, L.W.M.M. Terstappen, G.J. Puppels, and J. Greve, Cytometry 8, 539 (1987).

    Google Scholar 

  3. A.G. Hoekstra, Computer Simulations of Elastic Light Scattering, Implementation and Applications, Ph.D. dissertation, University of Amsterdam, 1994.

    Google Scholar 

  4. J.I. Hage and J.M. Greenberg, Astrophysical Journal 361, 251 (1990).

    Google Scholar 

  5. J.I. Hage, M. Greenberg, and R.T. Wang, Applied Optics 30, 1141 (1991).

    Google Scholar 

  6. K. Lumme and J. Rahola, Astrophys. J. 425, 653 (1994).

    Google Scholar 

  7. T.T. Charampopoulos, D.W. Hahn, and H. Chang, Applied Optics 31, 6519 (1992).

    Google Scholar 

  8. C.M. Sorensen, J. Cai, and N. Lu, Applied Optics 31, 6547 (1992).

    Google Scholar 

  9. W.L. Eberhard, Applied Optics 31, 6485 (1992).

    Google Scholar 

  10. I. Colbeck, E.J. Hardman, and R.M. Harrison, J. Aerosol Sci. 20, 765 (1989).

    Google Scholar 

  11. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

    Google Scholar 

  12. P.M.A. Sloot and C.G. Figdor, Applied Optics 25, 3559 (1986).

    Google Scholar 

  13. A.G. Hoekstra and P.M.A. Sloot, Optics Letters 18, 1211 (1993).

    Google Scholar 

  14. E.M. Purcell and C.R. Pennypacker, The Astrophysical Journal 186, 705 (1973).

    Google Scholar 

  15. B.T. Draine and P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

    Google Scholar 

  16. A.G. Hoekstra, P.M.A. Sloot, Int. J. Mod. Phys. C 6, 663 (1995).

    Google Scholar 

  17. S.F. Ashby, T.A. Manteuffel, and P.E. Saylor, Siam J. Numer. Anal. 27, 1542 (1990).

    Google Scholar 

  18. A.G. Hoekstra, P.M.A. Sloot, W. Hoffmann, and L.O. Hertzberger, Tech. Rept. CS-92-06, Faculty of Mathematics and Computer Science, University of Amsterdam, 1992.

    Google Scholar 

  19. J.J. Goodman, B.T. Draine, and P.J. Flatau, Optics Letters 16, 1198 (1991).

    Google Scholar 

  20. M.D. Grimminck, Masters Thesis, University of Amsterdam, faculty of mathetics, computer science, physics, and astronomy (1996).

    Google Scholar 

  21. A.G. Hoekstra, P.M.A. Sloot, F. van der Linden, M. van Muiswinkel, J.J.J. Vesseur, and L.O. Hertzberger, Concurrency, Practice and Experience 8, 19 (1996).

    Google Scholar 

  22. H. Begemann and J. Rastetter, Atlas of clinical hematology (Springer Verlag 1979).

    Google Scholar 

  23. P. Latimer, D.M. Moore, and F. Dudley Bryant, J. Theor. Biol. 21, 348 (1968).

    Google Scholar 

  24. P.M.A. Sloot, Elastic Light Scattering in the Development of Computer Assisted Cell Separation, Ph.D. dissertation, University of Amsterdam, 1988.

    Google Scholar 

  25. K.W. Keohane and W.K. Metcalf, Quart. J. Exp. Physiol. Cog. Med. Sci. 44, 343 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heather Liddell Adrian Colbrook Bob Hertzberger Peter Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoekstra, A.G., Grimminck, M.D., Sloot, P.M.A. (1996). Simulating light scattering from micron-sized particles. In: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1996. Lecture Notes in Computer Science, vol 1067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61142-8_558

Download citation

  • DOI: https://doi.org/10.1007/3-540-61142-8_558

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61142-4

  • Online ISBN: 978-3-540-49955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics