Skip to main content

Automatic interpretation of chemical structure diagrams

  • Conference paper
  • First Online:
Graphics Recognition Methods and Applications (GREC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1072))

Included in the following conference series:

Abstract

Chemical structure diagrams, just as in engineering drawings, maps, and other technical diagrams, consist of solid and dashed lines (bonds), characters (atom symbols), and other symbols such as brackets, parentheses, wedges (stereo-up bonds) or dashed wedges (stereo-down bonds). In addition to recognizing these low-level elements of such drawings, other artifacts may be present — bonds intersections may be crossings or atom nodes, character strings may represent underlying chemical structure, and circles are sometimes used to represent ring-alternating bonding — requiring a considerable knowledge base of chemistry to be able to interpret correctly. This paper discusses the general processes used in the program Kekulé 1 that embodies this interpretation ability with more detailed explanations of how some problems relating to polygon approximation, dashed line and dashed wedge finding, and optical character recognition were solved.

Work on this project was supported in part by the National Cancer Institute under SBIR Grant 5 R44 CA47241.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rozas, R.; Fernandez, H. Automatic Processing of Graphics for Image Databases in Science. J. Chem. Inf. Comp. Sci. 1990, 30, 7–12.

    Google Scholar 

  2. Contreras, M. L.; Allendes, C.; Alvarez, L. T.; Rozas, R. Computational Perception and Recognition of Digitized Molecular Structures. J. Chem. Inf. Comp. Sci. 1990, 30, 302–307.

    Google Scholar 

  3. Pavlidis, T. Algorithms for Graphics and Image Processing; Computer Science Press: Rockville, MD, 1982; pp 281–297.

    Google Scholar 

  4. Rosenfeld, A.; Kak, A. C. Digital Picture Processing; Academic Press: Orlando, FL, 1982; Vol. 2, pp 121–126.

    Google Scholar 

  5. Kasturi, R.; Alemany, J. Information Extraction from Images of Paper-Based Maps. IEEE Trans. Software Eng. 1988, 15 (5), 671–675.

    Google Scholar 

  6. Govindan, V. K. Character Recognition-A Review. Pattern Recognit. 1990, 23 (7), 671–683.

    Google Scholar 

  7. Hu, M. K. Visual Pattern Recognition by Moment Invariants. IRE Trans. Inf. Theory 1962, 2, 179–187.

    Google Scholar 

  8. Khotanzad, Al; Hong, Y. H. Invariant Image Recognition by Zernike Moments. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12 (5), 489–497.

    Google Scholar 

  9. Teague, M. R. Image analysis via the general theory of moments. J. Opt. Soc. Am. 1980, 70 (8), 920–930.

    Google Scholar 

  10. Persoon, E. Shape Discrimination Using Fourier Descriptors. IEEE Trans. Syst., Man, Cybern. 1977, SMC-7 (3), 170–179.

    Google Scholar 

  11. Zahn, C. T.; Roskies, R. Z. Fourier Descriptors for Plane Closed Curves. IEEE Trans. Comput. 1972, C-21 (3), 269–281.

    Google Scholar 

  12. Korpel, A. Gabor: frequency, time, and memory. Appl. Opt. 1982, 21 (20), 3624–3632.

    Google Scholar 

  13. Reber, W. L.; Lyman, J. An Artificial Neural System Design for Rotation and Scale Invariant Pattern Recognition. Proc IEEE 1st Int. Conf. Neural Networks 1987, 4, 277–283.

    Google Scholar 

  14. Lashas, A.; Shurna, R.; Verikas, A.; Dosinas, A. Optical Character Recognition Based on Analogue Preprocessing and Automatic Feature Extraction. Comput. Vision, Graphics, and Image Process. 1985, 32, 191–207.

    Google Scholar 

  15. Kahan, S.; Pavlidis, T.; Baird, H. S. On the Recognition of Printed Characters of Any Font and Size. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9 (2), 274–288.

    Google Scholar 

  16. Jackel, L. D. et al; Hardware Requirements for Neural-Net Optical Character Recognition, IEEE Int. Joint Conf. on Neural Networks, 1990, Vol. 2, pp 855–860.

    Google Scholar 

  17. Rogers, A. Kekulé for Windows: The Complete Structure Input System. Journal of Chemical Information and Computer Science, 1994, 34, pp 1225–6.

    Google Scholar 

  18. Seiter, C. Kekulé 1.1. MACWORLD, November 1994, pp 63–4.

    Google Scholar 

  19. Yip., C. W., et al. Scanning for Structures. Analytical Chemistry, 1994, Vol. 66, No. 24, pp 1216A–1217A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rangachar Kasturi Karl Tombre

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDaniel, J.R., Balmuth, J.R. (1996). Automatic interpretation of chemical structure diagrams. In: Kasturi, R., Tombre, K. (eds) Graphics Recognition Methods and Applications. GREC 1995. Lecture Notes in Computer Science, vol 1072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61226-2_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-61226-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61226-1

  • Online ISBN: 978-3-540-68387-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics