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Abstract.

 

 A generation algorithm based on an active chart parsing algorithm is
introduced which can be used in conjunction with a Shake and Bake machine
translation system. A concise Prolog implementation of the algorithm is pro-
vided, and some performance comparisons with a shift-reduce based algorithm
are given which show the chart generator is much more efficient for generating
all possible sentences from an input specification.

 

1   Introduction

 

Shake and Bake (S&B) is an approach to machine translation [1][14] in which genera-
tion is driven from a collection of 

 

signs

 

 (called a bag) where the individual signs are
related by syntactic and semantic dependencies. Each sign in the bag is a feature struc-
ture containing orthographic, syntactic, and semantic information associated with a
single word (or constituent) to be included in the target language sentence. This differs
from some more traditional approaches to Machine Translation, as discussed in [3], in
which a logical form or some explicit syntactic-semantic structure is used as the input
to the generation algorithm. 

The S&B generation problem is known to be NP-complete [3], but there have
been suggestions for improving the efficiency of the generation process by using
memoization techniques or a chart to keep track of previously encountered hypotheses
[2][10], constraint networks [3][13], or heuristics [5]. If additional restrictions on the
generation problem are accepted, a polynomial time algorithm can be obtained for a
related generation problem [12].

Generation is used in S&B as a variation of parsing, except that a bag is consumed
instead of an input string. The difference between parsing and generation is that the
order of the constituents in the string constrains parsing while semantic dependencies
on which constituents can be combined constrains generation. 

Beaven [2] illustrated how the Cocke-Younger-Kasami (CYK) parsing algorithm
could be adapted to work with a binary branching grammar (specifically, unification
categorial grammar (UCG) [4]); here we will show how a more general generator,
based on an active chart parser, has a straightforward realization as a Prolog program.
This generator also has the potential for a variety of different search strategies aside
from the breadth-first one associated with CYK. We will then examine the perfor-
mance of the generator using Head-Driven Phrase Structure Grammar (HPSG) [8][9].

 

2   Shake and Bake Machine Translation

 

While the focus of this paper is on the generation process, it is appropriate to outline
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briefly the translation process used in S&B since the input to the generation module is
different than that found in traditional MT systems. As summarized in [10][14], the
parsing of a source language sentence in S&B is performed with a unilingual grammar
(and lexicon), as is the generation of a target language sentence. Instead of the parser
producing an interlingual representation (to be used by a target language generator as
is done in the 

 

interlingua

 

 approach [6]), or a language specific syntactic-semantic rep-
resentation (to be subjected to language-pair specific transfer rules as is done in the

 

transfer

 

 approach [6]), the goal is to produce a bag consisting of signs obtained from
the leaves of the parse tree. Each of these leaves will have more information than its
counterpart from the unilingual lexicon due to the unification and structure sharing that
occurs as a result of a successful parse.

As a simplified example, consider the translation of the English sentence 

 

John
loves Mary

 

 into the French sentence 

 

Jean aime Marie

 

. We will assume that the source
language sentence is first analyzed with the simplified English grammar and lexicon
provided in Fig. 1. Instead of using an actual UCG or HPSG grammar in this paper, we
can simplify the discussion by using a traditional rewrite rule notation. The last three
rules in Fig. 1 would actually be lexical entries in UCG or HPSG. Each of the grammar
symbols in this simplified grammar is intended to represent a feature structure, with
the subscript being a list corresponding to the value of a 

 

semantic indices

 

 field within
the feature structure. The semantic indices correspond to the arguments of the semantic
relation introduced in some logical form. It is assumed that there are semantic argu-
ments not only for the entities involved in the relation but also for the events, actions
and states. In Fig. 1, we use identical uppercase letters to represent identity (structure
sharing) of indices while lowercase letters are used for distinct indices.

The 

 

X

 

 and 

 

Y

 

 contained in the rule/entry for 

 

loves

 

 correspond to the semantic indi-
ces of the subject and object of the verb, with 

 

l

 

 

 

being the semantic index associated
with the verb itself. So, we are saying that there is a relationship like 

 

love(l,X,Y)

 

, where

 

l

 

 is the state of 

 

X

 

 loving 

 

Y

 

. After a successful parse, these variables in the lexical entry
for 

 

loves

 

 will be unified or structure shared with the semantic indices found in the
actual subject or object. So, in the parse of 

 

John loves Mary

 

, 

 

X

 

 will be unified with 

 

j

 

,
and 

 

Y

 

 with 

 

m

 

. The source language bag would thus contain the constituents [

 

Mary

 

<m>

 

,

 

John

 

<

 

j

 

>

 

, 

 

love

 

<

 

j

 

,m,

 

l

 

>

 

]. 
Given a bag of leaves obtained from the analysis of the source language sentence,

a bilingual (or multilingual) lexicon is then used to obtain a corresponding bag of tar-
get language signs. Entries in the bilingual lexicon associate sets of target language
signs with sets of source language signs; they equate indices from the semantic repre-

s<X,…,P> → np<X>  vp<X,…,P>
vp<X,Y,…,P> → v<X,Y,…,P>  np<Y>
np<j> → John<j>
np<m> → Mary<m>
v<X,Y,l> → loves<X,Y,l>

Fig. 1. Simple Grammar with Semantic Indices
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sentation of the source language with ones from the semantic representation of the tar-
get language. During the transfer phase, we will assume for our simple example that
the bilingual lexicon provides a one to one mapping between English words and their
French counterparts and that this transfer will instantiate the semantic indices in the
target language bag, giving us a bag containing the constituents [

 

Marie

 

<

 

m

 

>

 

,

 

 Jean

 

<

 

j

 

>

 

,

 

aime

 

<

 

j

 

,

 

m

 

,

 

l

 

>

 

]. Note that for a sentence like 

 

John likes Mary

 

 which could have a transla-
tion like 

 

Marie plaît à Jean, 

 

the bilingual lexicon maps the single element 

 

like

 

 into two
elements 

 

plait

 

 and 

 

à

 

, where the order of the indices for 

 

m

 

 and 

 

j

 

 for 

 

plaît

 

 would be
reversed from that in the source language [14].

The target language bag is given to the S&B generation algorithm which together
with the unilingual grammar for the target language is used to generate the sentence.
The generator determines how to combine the different constituents from the bag such
that the result is compatible with the instantiated semantic indices. For example, given
the target language bag above, where 

 

j

 

 is the semantic index of the subject and 

 

m

 

 is the
index of the object, the generator will not be able to combine these constituents to
obtain the sentence 

 

Marie aime Jean

 

, but it will be able to generate 

 

Jean aime Marie.

 

3   A Chart Generation Algorithm

 

3.1 Chart Parsing

 

A chart can be viewed as a graph where the nodes correspond to positions between
words in an input sentence and the edges between nodes correspond to analyses span-
ning substrings in the input sentence. Edges are labelled with ‘dotted rules’ which
describe not only completed constituents (inactive edges), but also incomplete constit-
uents (active edges). Constituents appearing to the left of the dot correspond to those
that have been parsed, while those to the right of the dot (which are referred to as the
‘expectations’) have yet to be found. Thus, inactive edges will have no constituents yet
to be found; the dot will be at the rightmost position in the rule. Fig. 2 provides part of
the chart that would be created during the parsing of the sentence

 

 John loves Mary,

 

assuming the grammar introduced in Fig. 2 (ignoring the semantic indices).   

During parsing, new edges can be created either by 

 

Initialization

 

 (also known as

np → John. v → loves. np → Mary.

vp → v  np.

vp → v . np

0 1 2 3

Fig. 2. Chart Edges and Nodes (Parsing)
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scanning

 

), or by 

 

Rule Invocation

 

 (also known as 

 

prediction

 

), or by Dot Movement
(also known as 

 

the fundamental rule

 

 or 

 

completion

 

). Although it is possible to describe
either a top-down or bottom-up chart parser, we will only describe a bottom-up strat-
egy (a detailed description of chart or tabular parsing from a unification-based point of
view is provided in [7]). When new edges are created, they are placed into an agenda.
The agenda is used to keep track of new edges until it is their turn to be added to the
chart. In the simplest case, the agenda can just be a stack or queue. It is initialized from
the words in the input sentence. The main parsing process consists of selecting an edge
from the agenda, applying Rule Invocation and Dot Movement to the current edge in
order to create new edges (which would be added to the agenda), and then adding the
current edge to the chart. An edge that spans the entire input sentence corresponds to a
successful parse.

In order to explicitly describe the behavior of a chart parser, we must first define
initialization, rule invocation, dot movement, and the notion of a successful parse. Let
us introduce the notation <

 

i,  j,  C 

 

→

 

 

 

α. β > for an edge, where i is the starting posi-
tion, j is the ending position, C is a nonterminal symbol, and α and β are sequences of
grammar symbols. In general, we will be using greek letters to correspond to
sequences of grammar symbols, italicized lowercase letters as variables over nodes,
italicized uppercase letters as variables over nonterminal symbols, and italic w as a
variable over terminal symbols.

Initialization: If word w appears as the ith word in the input sentence then, for every
grammar rule of the form A →w, add edge <i-1,  i,  A → w . > to the agenda.

Rule Invocation: Given inactive edge <i,  j,  C → α . >, for every grammar rule of
the form A → C γ, add edge <i,  j,  A → C . γ > to the agenda if it is not already in the
chart or agenda.1

Dot Movement: Given active edge <i,  j,  A → α . C β > and inactive edge    <j,  k,
 C  → γ . >, add edge <i,  k,  A → α C. β> to the agenda if it is not already in the chart
or agenda.

Success: An inactive edge <0,  n,  S → α. > that spans the entire sentence of length n,
where S is the start symbol of the grammar corresponds to a successful parse of the
sentence.

With these definitions in place, we explicitly describe the chart parsing algorithm
in Fig. 3.

Now let us again consider the example from Fig. 2. At the time that the edge
<0,1,np → John .> is taken from the agenda and added to the chart, Rule Invocation is
applied to this inactive edge to create the active edge <0, 1, s → np . vp> which is then
added to the agenda. Whenever this new active edge is then eventually processed, Dot
Movement is applicable to it and the inactive edge <1, 3, vp → v np  . > already in the
chart which results in the addition of the new edge <0, 3, s → np vp . > to the agenda.

1. An alternative formulation of rule invocation would have the edge <i,  i,  A → . C γ >
added to the agenda instead. Dot movement would then be used to obtain the edge <i,  j,
 A → C . γ >. 
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This last edge will satisfy our criteria for success when it is processed, and thus an
appropriate output is generated. Processing of this edge then continues, and the algorithm
thus continues to look for alternative analyses for the sentence by processing subsequent
edges from the agenda until the agenda is exhausted and all parses are found. Alterna-
tively, one could terminate the algorithm after the first successful edge is found. Note
that it is possible to augment the information associated with the edges so that it is easy
to obtain the parse tree and/or the bag associated with the sentence.

3.2 Chart Generation

In chart generation, the edges of the chart still keep track of complete and incomplete
constituents, but instead of the edges spanning contiguous words in an input sentence
they span (not necessarily adjacent) constituents from a bag. In a chart parser, it is
assumed that an edge from position i to position j in a sentence includes all constitu-
ents from i to j; this is not the case with a chart generator.

Instead, we use a hypergraph as a chart with our nodes corresponding to signs
from the input bag. In a hypergraph, edges connect one or more nodes. So an edge of k
nodes (a k-edge) in our chart corresponds to the generation of a constituent using the
corresponding k signs from the bag. All we need to do is assign an arbitrary numbering
to each of the signs in the input bag. Our goal for generation is to obtain a hyperedge
than contains all the nodes of the graph; this ensures that no sign is used more than
once in the generation of a sentence.

Our notation for edges is thus changed so that instead of containing a starting and
ending position, an edge contains a set of nodes connected by the hyperedge. We still
use the dotted rule to label the hyperedge, so our edges are of the form <N, C → α .β >
where N is a set of nodes connected by the hyperedge.

Assuming the use of signs instead of atomic grammar symbols, the actual sen-
tence generated is contained within the feature structure of the sign C for a hyperedge
that includes all the nodes in the chart. For a sentence w1,w2,...,wn, we explicitly repre-
sent it in our edges as <{1,2,...,n}, C[w1,w2,...,wn] → α. >

Simply by changing the definitions for Initialization, Rule Invocation, Dot Move-
ment, and Success, the same algorithm that was used for parsing can now be used for

Initialization
While the agenda is not empty, remove an edge E from the agenda

If E is an inactive edge
Then

If E corresponds to a Success Then Display Parse
Attempt Rule Invocation on E
For all active edges A in the chart, attempt Dot Movement on the pair A,E

Otherwise /* E is an active edge */
For all inactive edges I in the chart, attempt Dot Movement on the pair E,I

EndIf
Add E to the chart

Fig. 3. Chart Parsing Algorithm
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generation. 

Initialization (Generation): If sign C[wi] appears as the ith sign in the input bag, then
add edge <{i} , C[wi] → . > to the agenda.

Rule Invocation (Generation): Given inactive edge <N,  C [ω] → α . >, for every
grammar rule of the form A → C' γ, where  C' unifies with C under substitution ϕ, that
is (C)ϕ = (C')ϕ, add edge <N,  (A[ω] →C . γ)ϕ> to the agenda if it is not already in
the chart or agenda (or more accurately, if it is not subsumed by an edge already in the
chart or agenda).

Dot Movement (Generation): Given active edge <M,  A[ω] → α. C β> and inactive
edge <N,  C' [υ] → γ . >, where sets M and N are disjoint (M∩N=∅), and where C '
unifies with C under substitution ϕ, add edge <M∪N,  (A[ωυ] → α C. β)ϕ> to the
agenda if it is not already in (or subsumed by an edge in) the chart or agenda.

Success: An inactive edge <N, S [ω] → α. > that spans the entire bag of size n, |N|=n,
where S is the start symbol of the grammar corresponds to a successful generation of
the sentence ω.

3.3 An Example

To illustrate the algorithm, we will consider the generation of the sentence Jean aime
Marie from the bag containing the signs [Marie<m>, Jean<j>, aime<j,m,l>] with a target
language grammar essentially equivalent to our simple source language grammar,
except for the use of different lexical entries.

During the initialization phase the following edges will be created and added to
the agenda.

<{Marie<m>},  Marie<m>[Marie]→ . > (1)

<{Jean<j>},  Jean<j>[Jean]→ . > (2)

<{aime<j,m,l>},  aime<j,m,l>[aime]→ . > (3)

Applying Rule Invocation to edge (1), then to edge (2), and then to (3) will result
in the new edges shown in (4), (5) and (6). Notice that unification has resulted in the
dotted rule from edge (6) containing more information that was originally in the gram-
mar rule. This additional information, which specifies the indices of the arguments of
the verb, came from edge (3) which came from the transfer phase of the S&B machine
translation.

<{Marie<m>},   np<m>[Marie] → Marie<m> . > (4)

<{Jean<j>},  np<j>[Jean] → Jean<j> . > (5)

<{aime<j,m,l>},   v<j,m,l>[aime] → aime<j,m,l> . > (6)

Both edges (4) and (5) can have rule invocation applied to them, resulting in edges
(7) and (8) respectively. Notice that these two new edges differ in the semantic indices
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associated with the vp (after the dot) that has yet to be found.

<{Marie<m>},   s<m,…,P>[Marie] → np<m>  . vp<m,…,P>> (7)

<{Jean<j>},   s<j,…,P>[Jean] → np<j>  . vp<j,…,P>> (8)

From edge (6), rule invocation gives us edge (9), which can then be combined
with edge (4) to obtain edge (10). It would not be possible to combine edge (9) with
edge (5) due to conflicting semantic indices.

<{aime<j,m,l>},  vp<j,m,l>[aime] → v<j,m,l>  . np<m>> (9)

<{Marie<m>, aime<j,m,l>,},  vp<j,m,l>[aime, Marie] → v<j,m,l>  np<m>  . > (10)

Finally, edge (8) can combine with edge (10) to yield an edge that includes all the
nodes in the chart, edge (11). Note that edge (7) would not combine with edge (10) due
again to conflicting semantic indices.

<{Marie<m>, Jean<j>, aime<j,m,l>},   

s<j,m,l>[Jean, aime, Marie] → np<j>  vp<j,m,l> .> (11)

4   Chart Generation in Prolog

4.1 The Chart

It is straightforward to implement edges as terms within Prolog, using the Prolog data-
base to store the chart edges. The set of nodes associated with an edge can be stored as
a bitstring; for every node i contained within the set, we set the ith bit to 1. So the set
{2,4,5} would be encoded as the bitstring 00011010 which is the integer 26, and the
set {1,2,3} as 00000111 which is the integer 7. This way, we can use the logical OR
operation for set union, and we can test to see if sets are disjoint by ensuring that the
logical AND of their associated bitstrings is 0. The different parts of the dotted rule can
be represented as separate arguments of a term.  For an inactive edge of the form  <N,
C [ω] → α. >, we can use a term of the form 

inactive_edge(N, C, Omega, Alpha) (12)

while for an active edge of the form <M, A[ω] → α. C β>, we could use the term

active_edge(M, A, Omega, Alpha, [C|Beta]).2 (13)

Alternative encodings might be desirable where each edge would also contain a
unique identifier number. Then, instead of having the edge explicitly store Alpha, it
could instead store a list of edge numbers corresponding to the different constituents of

2. To improve efficiency, an alternative encoding would be preferable where inactive
edges could be indexed using the C from the left hand side of the dotted rule, and where
the active edges would be indexed using the C appearing immediately to the right of the
dot. This could be done using the built-in indexing machanisms of Sicstus Prolog. In this
way, not all edges would need to be examined when trying to apply Dot Movement
(Martin Kay, personal communication).
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Alpha. In order to keep the implementation closely related to the description in sec-
tion 3, we used the actual constituents.

4.2 The Generator

An outline of a chart generator, based on the chart parsing algorithm from 3.1, is pro-

cgen(Bag,Phon) :-
  init_chart_from_bag(Bag,0,AllBits), % initialize chart
  cgen_aux(AllBits,Phon).

cgen_aux(AllBits,Phon) :-
  select_next(Edge), % get next edge
  ( cgen(Edge,AllBits,Phon) % succeeds when a sentence generated
  ; cgen_aux(AllBits,Phon)). % any more edges to process?

cgen(inactive_edge(AllBits,Sym,Sentence,_), AllBits, Sentence) :-
  start_symbol(Sym). % success, we’ve generated

cgen(Edge, _, _) :- % will fail
  rule_invocation(Edge).

cgen(Edge, _, _) :- % will fail
  dot_movement(Edge).

dot_movement(inactive_edge(IBits,ISym,IPhrase,_)) :- 
  active_edge(ActBits,ASym,APhrase,Found,[ISym|Rest]),
  IBits /\ ActBits =:= 0,                            % the logical AND of the bits must be 0
  NewBits is IBits \/ ActBits,                    % take the OR of the bits
  append(APhrase, IPhrase, NewPhrase),
  make_edge(NewBits, ASym, NewPhrase, [ISym|Found], Rest),
  fail. % failure driven loop

dot_movement(active_edge(ActBits,ASym,APhrase,Found,[ISym|Rest])) :- 
  inactive_edge(IBits,ISym,IPhrase,_),
  IBits /\ ActBits =:= 0,                % the logical AND of the bits must be 0
  NewBits is IBits \/ ActBits,            % take the OR of the bits
  append(APhrase, IPhrase, NewPhrase),
  make_edge(NewBits, ASym, NewPhrase, [ISym|Found], Rest),
  fail. % failure driven loop

rule_invocation(inactive_edge(IBits,ISym,IPhrase,_)) :-
  rule(Sym, [ISym|Rest]),
  make_edge(IBits, Sym, IPhrase, [ISym], Rest),
  fail. % failure driven loop

Fig. 4. A Prolog Chart Generator
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vided in Fig. 4. The cgen/2 predicate is given a bag of signs and it then calls the initi-
ation process which introduces the initial edges into the agenda and returns a bitstring
of 1’s, AllBits, having a length corresponding to the number of constituents in the bag.
Upon successful generation, cgen/2 returns a sequence of words corresponding to the
generated sentence as Phon.

The cgen_aux/2 predicate selects the next edge from the agenda (adding it to the
chart), and then calls cgen/3 to see if we have reached our terminating condition. It
then attempts all possible applications of dot movement and rule application (using
failure driven loops). Any new edges created as a result of these processes are added to
the agenda by make_edge/5.

In chart parsing, it is well known that the redundancy check (where we ensure that
new edges are not added to the agenda if they are already contained in the chart or
agenda) is expensive. Since we are using a unification-based grammar, we would actu-
ally need a subsumption check rather than just a redundancy check to ensure that the
new edge being added to the agenda is not subsumed by any edge currently in the chart
or agenda. Presently, we have chosen not to implement the redundancy/subsumption
check for the sake of improved performance. It could easily be added by incorporating
a call to the built-in predicate subsumes_chk/2 from Sicstus Prolog within the
make_edge/5 predicate.

Note that two separate clauses for dot movement are provided, one for when the
current edge being processed is an active edge, another for when it is an inactive edge.
While this could have been done in just one clause, two have been used for the sake of
clarity. When we are processing an inactive edge (first clause), we look for all active
edges in the chart such that the nodes covered by the two edges are disjoint (IBits ∧
ActBits = 0), and we create a new hyperedge connecting all the nodes connected by the
two original (hyper)-edges, (IBits ∨ ActBits). The phrase associated with the new con-
stituent is then just the concatenation of those associated with its components.

In the clause for rule invocation, we assume that a grammar rule of the form A →
w, will be stored as rule(A,W), where W is a list of symbols or signs. Again, by using
a failure driven loop we are able to add edges to the agenda for all possible compatible
rules.

5   Preliminary Experiments
Using a small S&B machine translation system that was developed for HPSG

[10], we replaced our HPSG shift-reduce generator with a chart generator based on the
one outlined here and obtained dramatic improvement for cases in which we were
interested in finding all possible sentences that could be generated. The performance of
the system for generating the first (chart 1st) and all (chart all) possible sentences from
bags varying in size from three to eleven elements is shown in Fig. 5. The results were
obtained on a SparcStation20 running Sicstus Prolog 2.1. For each size of bag, the tests
were performed for a few distinct bags, with the detailed results appearing in [11]. For
the sake of comparison, the figure also includes the results (shift reduce 1st, shift
reduce all) obtained from the best shift-reduce parser using memoization techniques
from [10]. Note that the average time for the shift-reduce parser spent generating all
possible sentences for bags of size 9, 10 and 11 (which is not included in the graph)
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was 3.0, 7.0 and 13.3 seconds respectively. The grammar had five rules and approxi-
mately thirty lexical entries. 

It is not surprising that the chart generator shows such a marked improvement
over the shift-reduce generator when exploring all alternatives, since the main concept
underlying a chart generator (or parser) is to consider each hypothesis only once. The
results show that the shift-reduce generator can perform marginally better than the
chart generator when only the first generated sentence is required. Improvements in the
chart and agenda manager, making full use of the indexing mechanisms provided by
the Prolog system, should narrow (or eliminate) this margin.

In our preliminary experiments, we have only considered the performance of the
system on bags from which it was possible to generate a sentence. In cases where no
sentence can be generated from a bag, then both generators have to consider all possi-
ble hyphotheses (before failing). Thus, we would again expect far superior perfor-
mance from the chart generator as opposed to the shift-reduce generator.

6   Analysis

The chart-based generation algorithm introduced in this paper is useful for generating
all possible sentences from a given input bag. In cases where only one generated sen-
tence is desired, other algorithms may be preferable. However, our algorithm is prefer-
able in cases where translation involves the creation of several possible target language
bags, each of which does not necessarily result in the successful generation of a sen-
tence. If one is able to assume that there is only one solution generated from a bag then

Fig. 5. Generation Time (secs).
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there is a polynomial time algorithm[12], but enough information must be transferred
from the source bag to the target sign to ensure that combination is deterministic —
this requires additional restrictions in the grammars and lexicons.

Our algorithm appears to be similar to the chart generator developed indepen-
dently by Trujillo and very briefly described in [13]. As Trujillo notes, it is possible to
further improve the efficiency of the generation procedure by using a constraint mod-
ule, exploring only the hypotheses that the constraint module deems to be possible,
rather than exploring all hypotheses as is done in our algorithm. The overhead for this
approach is expensive, thus making it inappropriate when dealing with uncomplicated
sentences, but for “complicated sentences with several modifiers, there is a marked
improvement in execution time” [13].

The algorithm presented here is more flexible than one based on the CYK algo-
rithm [2]. The CYK algorithm incrementally builds larger and larger constituents, until
one spanning all the words in a sentence is constructed. In our algorithm, there is no
requirement for smaller constituents to be constructed before the larger ones. A variety
of different control strategies could be used (via different agenda management tech-
niques) to get a solution more quickly than the breadth-first strategy reflected in the
CYK algorithm.

A large grammar is currently under development which will permit a proper eval-
uation of our algorithm on a wide range of constructions, and on a greater range of bag
sizes.
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