Skip to main content

Constructive induction: A preprocessor

  • Learning I: Induction
  • Conference paper
  • First Online:
Advances in Artifical Intelligence (Canadian AI 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1081))

  • 139 Accesses

Abstract

Inductive algorithms rely strongly on their representational biases. Representational inadequacy can be mitigated by constructive induction. This paper introduces the notion of relative gain measure and describes a new constructive induction algorithm (GALA) which generates a small number of new attributes from existing nominal or real-valued attributes. Unlike most previous research on constructive induction, our techniques are designed for use in preprocessing data set for subsequent use by any standard selective learning algorithms. We present results which demonstrate the effectiveness of GALA on both artificial and real domains with respect to C4.5 and CN2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Quinlan, J. R. C4-5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  2. Clark, P. & Niblett, T. “The CN2 Induction Algorithm”, Machine Learning 3, p261–283, 1989.

    Google Scholar 

  3. Pagallo, G & Haussler, D. “Boolean Feature Discovery in Empirical Learning”, Machine Learning 5, p71–99, 1990.

    Google Scholar 

  4. Yang, D-S., Rendell, L. A., Blix, G. “A Scheme for Feature Construction and a Comparison of Empirical Methods”, in Proceeding of the 12th International Joint Conference on Artificial Intelligence, p699–704, 1991.

    Google Scholar 

  5. Matheus, C. J. & Rendell, L. A. “Constructive Induction on Decision Trees”, in Proceeding of the llth International Joint Conference on Artificial Intelligence, p645–650, 1989.

    Google Scholar 

  6. Norton, S. W. “Generating better Decision Trees”, in Proceeding of the 11th International Joint Conference on Artificial Intelligence, p800–805, 1989.

    Google Scholar 

  7. Ragavan, H. & Rendell, L. “Lookahead Feature Construction for Learning Hard Concepts”, in Proceeding of the 10th Machine Learning Conference, p252–259, 1993.

    Google Scholar 

  8. Murphy, P. and Aha, D. “UCI Repository of Machine Learning Databases”, Tech. Report, University of California, Irvine, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gordon McCalla

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, YJ. (1996). Constructive induction: A preprocessor. In: McCalla, G. (eds) Advances in Artifical Intelligence. Canadian AI 1996. Lecture Notes in Computer Science, vol 1081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61291-2_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-61291-2_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61291-9

  • Online ISBN: 978-3-540-68450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics