Skip to main content

A polyhedral approach to the feedback vertex set problem

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1084))

  • 230 Accesses

Abstract

Feedback problems consist of removing a minimal number of arcs or nodes of a directed or undirected graph in order to make it acyclic. In this paper we consider a special variant, namely the problem of finding a maximum weight node induced acyclic subdigraph. We discuss valid and facet defining inequalities for the associated polytope and present computational results with a branch-and-cut algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cplex. Using the Cplex callable library and Cplex mixed integer library (1994). Cplex Inc.

    Google Scholar 

  2. Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Mathematical Programming, 33 (1985) 28–42

    Article  Google Scholar 

  3. Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the max-cut problem. Operations Research Letters, 1 (1981) 23–27

    Article  Google Scholar 

  4. Hackbusch, W.: On the feedback vertex set problem for a planar graph. Technical report (1994). Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

    Google Scholar 

  5. Jünger, M.: Polyhedral Combinatorics and the acyclic subdigraph problem., Research and exposition in mathematics 7 (1985). Heldermann Verlag, Berlin

    Google Scholar 

  6. Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane algorithms in combinatorial optimization. In Cook, W., Lovász, L., Seymour, P., editors, Combinatorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer Science 20 (1995) 111–152

    Google Scholar 

  7. Karp, R.: Reducibility among combinatorial problems. In Miller, R., Thatcher, J., editors, Complexity of Computer Computations, (1971) 85–103. Plenum Press, New York

    Google Scholar 

  8. Kevorkian, A.: General topological results on the construction of a minimum essential set of a directed graph. IEEE Transactions on Circuits and Systems, CAS-27(4) (1980) 293–304

    Article  Google Scholar 

  9. Kunzmann, A. Wunderlich, H.: An analytical approach to the partial scan problem. Journal of electronic testing: Theory and Applications, 1 (1990) 163–174

    Google Scholar 

  10. Lovász, L. Randomized Algorithms in Combinatorial Optimization. In Cook, W., Lovasz, L., Seymour, P., editors, Combinatorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer Science 20 (1995) 153–179

    Google Scholar 

  11. Monien, B. Schulz, R.: Pour approximation algorithms for the feedback vertex set problem. In Graphtheoretic concepts in computer science, Proc. 7th Conf. Linz/Austria (1985) 315–326

    Google Scholar 

  12. Rosen, B.: Robust linear algorithms for cutsets. Journal of algorithms, 3 (1982) 205–217

    Article  Google Scholar 

  13. Smith, W., Walford, R.: The identification of a minimal feedback vertex set of a directed graph. IEEE Transactions on circuits and systems, CAS-22(1) (1975) 9–15

    Article  Google Scholar 

  14. Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Theoretische Informatik Bericht 16 (1983). Universität Paderborn

    Google Scholar 

  15. Stamm, H.: On feedback problems in planar digraphs. Graph-theoretic concepts in computer science, Proc. Int. Workshop, Berlin/Germany 1990, Lect. Notes Comput. Sci. 484 (1992) 79–89. Springer Verlag

    Google Scholar 

  16. Thienel, S.: ABACUS — A Branch And CUt System. PhD thesis (1995). Angewandte Mathematik und Informatik, Universität zu Köln

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William H. Cunningham S. Thomas McCormick Maurice Queyranne

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Funke, M., Reinelt, G. (1996). A polyhedral approach to the feedback vertex set problem. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 1996. Lecture Notes in Computer Science, vol 1084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61310-2_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-61310-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61310-7

  • Online ISBN: 978-3-540-68453-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics