Abstract
Feedback problems consist of removing a minimal number of arcs or nodes of a directed or undirected graph in order to make it acyclic. In this paper we consider a special variant, namely the problem of finding a maximum weight node induced acyclic subdigraph. We discuss valid and facet defining inequalities for the associated polytope and present computational results with a branch-and-cut algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cplex. Using the Cplex callable library and Cplex mixed integer library (1994). Cplex Inc.
Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Mathematical Programming, 33 (1985) 28–42
Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the max-cut problem. Operations Research Letters, 1 (1981) 23–27
Hackbusch, W.: On the feedback vertex set problem for a planar graph. Technical report (1994). Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
Jünger, M.: Polyhedral Combinatorics and the acyclic subdigraph problem., Research and exposition in mathematics 7 (1985). Heldermann Verlag, Berlin
Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane algorithms in combinatorial optimization. In Cook, W., Lovász, L., Seymour, P., editors, Combinatorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer Science 20 (1995) 111–152
Karp, R.: Reducibility among combinatorial problems. In Miller, R., Thatcher, J., editors, Complexity of Computer Computations, (1971) 85–103. Plenum Press, New York
Kevorkian, A.: General topological results on the construction of a minimum essential set of a directed graph. IEEE Transactions on Circuits and Systems, CAS-27(4) (1980) 293–304
Kunzmann, A. Wunderlich, H.: An analytical approach to the partial scan problem. Journal of electronic testing: Theory and Applications, 1 (1990) 163–174
Lovász, L. Randomized Algorithms in Combinatorial Optimization. In Cook, W., Lovasz, L., Seymour, P., editors, Combinatorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer Science 20 (1995) 153–179
Monien, B. Schulz, R.: Pour approximation algorithms for the feedback vertex set problem. In Graphtheoretic concepts in computer science, Proc. 7th Conf. Linz/Austria (1985) 315–326
Rosen, B.: Robust linear algorithms for cutsets. Journal of algorithms, 3 (1982) 205–217
Smith, W., Walford, R.: The identification of a minimal feedback vertex set of a directed graph. IEEE Transactions on circuits and systems, CAS-22(1) (1975) 9–15
Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Theoretische Informatik Bericht 16 (1983). Universität Paderborn
Stamm, H.: On feedback problems in planar digraphs. Graph-theoretic concepts in computer science, Proc. Int. Workshop, Berlin/Germany 1990, Lect. Notes Comput. Sci. 484 (1992) 79–89. Springer Verlag
Thienel, S.: ABACUS — A Branch And CUt System. PhD thesis (1995). Angewandte Mathematik und Informatik, Universität zu Köln
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Funke, M., Reinelt, G. (1996). A polyhedral approach to the feedback vertex set problem. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 1996. Lecture Notes in Computer Science, vol 1084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61310-2_33
Download citation
DOI: https://doi.org/10.1007/3-540-61310-2_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61310-7
Online ISBN: 978-3-540-68453-4
eBook Packages: Springer Book Archive