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A b s t r a c t .  Although, in natural language, space modalities are used 
as frequently as time modalities, the logic of time is a well-established 
branch of modal logic whereas the same cannot be said of the logic of 
space. The reason is probably in the more simple mathematical  struc- 
ture of time: a set of moments together with a relation of precedence. 
Such a relational structure is suited to a modal treatment.  The structure 
of space is more complex: several sorts of geometrical beings as points 
and lines together with binary relations as incidence or orthogonality, 
or only one sort of geometrical beings as points but ternary relations 
as collinearity or betweeness. In this paper, we define a general frame- 
work for axiomatizing modal logics which Kripke semantics is based on 
geometrical structures: structures of collinearity, projective structures, 
orthogonal structures. 

1 I n t r o d u c t i o n  

Although,  in na tu ra l  language,  space modal i t ies  are used as f requent ly  as t ime 
modali t ies ,  the  logic of t ime  is a well-established branch  of moda l  logic [5] 
whereas  the same cannot  be  said of the  logic of space. The  reason is p robab ly  
in the more  simple m a t h e m a t i c a l  s t ruc ture  of time: a set of momen t s  toge ther  
with a relat ion of precedence.  Such a relat ional  s t ruc ture  is sui ted to a moda l  
t r ea tmen t .  The  s t ruc tu re  of  space is more  complex:  several  sorts  of geometr ica l  
beings as points  and lines toge ther  with b inary  relat ions as incidence [7] [8] or 
or thogonal i ty  [6], or only one sort  of geometr ica l  beings as points  but  t e rna ry  
relat ions as coll ineari ty or betweeness  [11]. Such relat ional  s t ruc tures  are not  
sui ted to a moda l  t r ea tment .  

S t ruc tures  of collinearity, first example ,  consist of a set of points  toge ther  
with a t e rna ry  relat ion of coll ineari ty between points.  They  cannot  cons t i tu te  the  
s t anda rd  semant ics  of the moda l  logic of collinearity. To overcome this problem,  
a f rame of coll ineari ty is associa ted to every s t ruc ture  of coll inearity in the 
following way. Let  _S = (P, C) be a s t ruc ture  of  collinearity, with P the set of 
points  and  C the  t e rna ry  relat ion of eoll ineari ty between points.  Let  W be the 
g raph  of the  re la t ion C. For every i, j E { 1, 2, 3}, let -=ij be the b inary  relat ion on 
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IV defined by (X1, X2, X3) ~-ij (Y1, ]72, Y3) if[ X i  -~- '~j. Intuitively, each element 
(X, 1/; Z) of W can be considered either as X, Y or Z. Let u = (X1, X2, X3), 
v = (~], Y2, Y3) and w = (Z~, Zg, Z3). The expression (~x E W)(u ~-il Z A V ~j2 
x A w  --~3 X) is equivalent to C(X~, Yj, Zk). Therefore, W(_S) = (W, ---=-ij) contains 
in some sense the whole information of S. W(_S) is the frame of collinearity over 
S_. It satisfies the properties detailed in section 4.2. A frame of collinearity is 
a relational structure of the form (W, ~ij) that  satisfies the same properties. 
It can be proved that any frame of collinearity is isomorphic to a frame of 
eollinearity over some structure of collinearity and that the set of all structures 
of collinearity is categorically equivalent to the set of all frames of collinearity. 
Therefore, frames of collinearity can constitute the standard semantics of the 
modal logic of eollinearity. 

Projective structures, second example, consist of a set of points and a set 
of lines together with a binary relation of incidence between points and lines. 
They cannot constitute the standard semantics of the modal logic of projective 
geometry. To overcome this problem, a projective frame is associated to every 
projective structure in the following way. Let S_ = (P,L, in)  be a projective 
structure, with P the set of points, L the set of lines and in the binary relation 
of incidence between points and lines. Let W be the graph of the relation in. 
Let -11 and -22 be the binary relations on W defined by (X, x) =11 (Y,y) iff 
X = Y and (X, x) -22 (Y, Y) iff x = y. Intuitively, each element (X, x) of W can 
be considered either as X or x. Let u = (X, x) and v = (Y, y). The expression 
tt = n o  -22 v is equivalent to X in y. Therefore, W(S_) = (~I~ =11, =22) contains 
in some sense the whole information of _S. W(S) is the projective frame over S_. It 
satisfies the properties detailed in section 7.1.2. A projective frame is a relational 
structure of the form (W, =11, =22) that satisfies the same properties. It can be 
proved that  any projective frame is isomorphic to a projective frame over some 
projective structure and that  the set of all projective structures is categorically 
equivalent to the set of all projective frames. Therefore, projective frames can 
constitute the standard semantics of the modal logic of projective geometry. 

Section 2 introduces point n-frames and n-arrow frames and gives the proof of 
their categorial equivalence. Section 3 extends Vakarelov's basic arrow logic [12] 
[13]. Its standard semantics is the set of all n-arrow frames. Section 4 describes 
an example of point 3-frames: the structures of collinearity, proves its categorial 
equivalence with the associated example of 3-arrow frames: frames of collinearity, 
and identifies the modal logic with standard semantics in the set of all frames 
of collinearity. Sections 5 and 6 extend the results of sections 2 and 3 to sorted 
point n-frames and sorted n-arrow frames. Section 7.1 describes an example of 
sorted point 2-frames: the projective structures, proves its categorial equivalence 
with the associated example of sorted 2-arrow frames: projective frames, and 
identifies the modal logic with standard semantics in the set of all projective 
frames. Section 7.2 describes an example of sorted point 3-frames: the orthogonal 
structures, proves its categorial equivalence with the associated example of sorted 
3-arrow frames: orthogonal frames, and identifies the modal logic with standard 
semantics in the set of all orthogonal frames. 
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2 P o i n t  n - f r a m e s  a n d  n - a r r o w  f r a m e s  

Let n _> 2 and (n) = { 1 , . . . , n } .  This section is devoted to the proof of the 
categorial equivalence between point n-frames and n-arrow frames. 

2.1 P o i n t  n - f r a m e s  

A point n-frame consists of a non-empty set S together with a n-ary relation 
R on S such that ,  for every X E S, there exists X 1 , . . . , X n  E S and there 
exists i E (n) such that  R(X~, . . . ,  X , )  and Xi = X.  The class of all point n- 
frames is denoted by ~,~ and is considered as a category with morphisms the 
usual homomorphisms between relational structures. Namely, let S = (S, R) and 
S ~ = (S', R ~) be point n-frames. Then f is called a homomorphism from S into 
S '  if, for every X1, . . .  ,X~ E S, R ( X 1 , . . . , X ~ )  only if R ' ( f (X1) , . . .  , f ( X , ) ) .  A 
one-to-one f is called an isomorphism from S into _S ~ if, for every X1,.  �9 �9 X .  E S, 
R' ( f (X~) , . . . ,  f (X~))  only if R(X1 , . . . ,  X , ) .  

2.2 n - a r r o w  f r a m e s  

A n-arrow flame consists of a non-empty set W of tips together with n 2 binary 
relations - i j  on ~u such that,  for every i , j ,  k E (n): 

- for every u E W, u - i i  u, 
- for every u, v E W, u -=ij v only if v ~ j i  tt, 
-- for every u, v, w E W, u ~-ij V and v -=jk W only if u --ik w. 

The n-arrow frame I.'I.__j" =- (W, ~i j )  is normal if: 

- for every u, v E W, u - i i  v, for every i E (n), only if tt = v. 

The class of all normal n-arrow frames is denoted by ~ili n and is considered as 
a category with morphisms the usual homomorphisms between relational struc- 
tures. 

2.3 F r o m  p o i n t  n - f r a m e s  to  n - a r r o w  f r a m e s  

Let _S = (S,R) be a point n-frame. Let W = { ( X 1 , . . . , X n ) :  X 1 , . . . , X n  E S 
and R(X1, . . .  ,Xn)}.  For every i , j  E (n), let _=~j be the binary relation on W 
defined by (X~ , . . .  ,Xn)  ----ij (Y1,.. .  ,Y.)  iff Xi = Yj. 

L e m m a  1 I'V(S) = (W, -~'ij) i8 a normal n-arrow frame. 

E x a m p l e  1 Suppose n = 3. It can be proved that if, for every X , Y  E S, 
R(X, Y, X)  then, for every i, j E (3) and for every x, y E W, there exists u E W 
such that x =-il u, y - j~ u and x =-i3 u. 
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2.4 F r o m  n - a r r o w  f r a m e s  t o  p o i n t  n - f r a m e s  

Let i.P_[ = (I'~, " ' i j )  be a normal n-arrow frame. For every c~l , . . . ,  an  E P (W) ,  if: 

- for every i, j E (n) and for every u, v E W,  u E ai and v E aj only if u =ij v, 
- for every i , j  E (n) and for every u, v E 14:~ a E ai and u --q v only if v E cb, 
-alU...Uanr 

then (c t l , . . . ,  O~n) is a generalized point of Ij[. For every u E W and for every 
i E (n), let i(u) = ( - i t  ( u ) , . . . ,  "i.~ (u)). Direct calculations would lead to the 
conclusion that:  

L e m m a  2 For every u, v E W and for every i , j  E (n), i(u) = j(v)  iff u =_~j v. 

L e m m a  3 For every generalized point (ctl . . . .  , an)  of I'fi_2", there exists u E W 
and i E (n) such that i(u) = ( a l , . . . , c ~ ) .  

Let S be the set of the generalized points of t'I,_[. Let R be the n-ary relation on 
S defined by R ( X 1 , . . . ,  X~) iff there exists u E W such that ,  for every i E (n), 
x ~  = i (u) .  

L e m m a  4 S(W) = (S, R) as a point n-frame. 

E x a m p l e  2 Suppose n = 3. It can be proved that if, for every i, j E (3) and for 
every x, y E W,  there exists u E W such that x --il u, y "~j2 U and x =i3 u then, 
for every X,  Y E S, R(X ,  If, X ) .  

2.5 R e p r e s e n t a t i o n  t h e o r e m s  

Let H.'__2' = (W, "ij) be a normal n-arrow frame and I ! "  = W(S(W)) .  For every u E 
W, let g(u) = ( l ( u ) , . . . ,  n(u)). Direct calculations would lead to the conclusion 
that  g is an isomorphism from Ifl_2 ~ into Ifl_['. Therefore: 

L e m m a  5 ~$'~" and ~.___~"~ are isomorphic. 

Let S = (S,R)  be a point n-frame and S '  = S(I,I:(S)). For every X E S, 
let f ( X )  = ( I ( X ) , . . . , n ( X ) )  where i (X)  = { ( X 1 , . . . , X n ) :  X 1 , . . . , X n  E S, 
R ( X 1 , . . . ,  Xn) and Xi = X}.  Direct calculations would lead to the conclusion 
that  S is an isomorphism from S into S ' .  Consequently: 

L e m m a  6 S and S_' are isomorphic. 

Direct calculations would lead to the conclusion that  the mapping S: I,l'[ --~ S(W) 
is a functor from ~5~ into 2"~ and that  the mapping W: S -+ W(S)  is a functor 
from Z~ into ~n. Therefore: 

T h e o r e m  1 The categories Zn and qSn are equivalent. 

3 B a s i c  a r r o w  l o g i c  

Let n > 2. This section introduces a modal logic with s tandard semantics in the 
class of all normal n-arrow frames. 



47 

3 .1  L a n g u a g e  

The  linguistic basis of basic arrow logic is the proposi t ional  calculus. Let V A R  
be the  set of its atomic formulas. For every i , j  �9 (n), the moda l  ope ra to r  
[=-ij] is added  to the s t anda rd  proposi t ional  formal ism and, for every i �9 (n), 
the  moda l  ope ra to r  [~ii] is added to the s t anda rd  proposi t ional  formalism. Let  
[r = [~11]A A . . .  A [~nn]A and [U]A = .4 A [r 

3 .2  S e m a n t i c s  

A general n-arrow frame consists of a n o n - e m p t y  set W toge ther  with, for every 
i , j  E (n), a b inary  relat ion ~ij o n  I,'V such tha t  (~'l'~ij) is a n -a r row f rame  
and,  for every i C (n), a b inary  relat ion ~ii o n  ~I 'r. A general  n-ar row f rame 
I.~'~ = (I.~z~=_ij,~ii) is C-standard if, for every u , v  E W,  u r v iff there  exists 
i C (n) such t ha t  u ~i l  v. A C - s t a n d a r d  f rame I,fl_2" = (W, -~ j ,  7~ii) is quasi- 
standard if, for every i C (n), ~ii is the complement  of ~.ii. 

L e m m a  7 I f  the general n-arrow frame I'!" = (I.l.~ =-ij, ~ii) is quasi-standard 
then the n-arrow frame (I.l', ==-ij) is normal. 

Let I.~'_2 ~ = (1)l.';-.ij, ~ i i )  be a general  n -a r row frame.  A valuation on Ifl_2" is a 
m a p p i n g  which assigns a subset  of W to every a tomic  formula.  A (C-standard, 
quasi-standard) general n-arrow model is a s t ruc ture  of the form jr4 -= (~,~ ~-ij 
, ~ i i ,  m)  where ~.fl_2 ~ = (I.t,',--ij, ~i,)  is a (C-s t andard ,  quas i - s tandard)  general  n- 
arrow f rame and m is a valuat ion on I'I2". The  satisfiabili ty relat ion in A4 be tween 
a formula  A and a possible world u E W is defined in the following way: 

- u ~ .4 iff u C re(A), .4 a tomic  formula,  
- u ~ , ~  - ,A iff u ~ z 4  A, 
- u ~ M A A B i f f u ~ . ~ 4 A a n d u ~ M B ,  
- for every i, j ~ (n), u ~ M  [ - i j ] A  iff, for every possible world v E W, u =~j v 

only if v ~ M  .4, 
- for every i C (n), u ~ . ~  [ ~ ] A  iff, for every possible world v C W, u ~ v 

only if v ~:t4 A. 

If  34 is C - s t a n d a r d  then: 

L e m m a  8 For every formula A and for every possible world u E W :  

- u ~ [r  iff, for every possible world v �9 W,  ~ r v only if v ~ , u  A, 
- u ~ M  [U]A iff, for every possible world v �9 W,  v ~ .~  A. 

A formula  is valid in a general  n-ar row model  when it is satisfied in every possible 
world of this model .  A schema is valid in a general  n -a r row f rame if every ins tance  
of the schema is valid in every model  on this frame.  A schema is valid in a class 
of general  n -a r row frames  if it is valid in ever)- f rame of this class. Let X' and 
Z '  be  two classes of general  n -a r row frames.  Z is modally definable in ~" by a 
schema A if, for every f rame I.~'_: ~ �9 N~, A is valid in tI)__2" iff I'I,__:" �9 Z .  

L e m m a  9 The quasi-standard n-arrow frames are modally definable in the class 
of all C-standard n-arrow frames by the conjunction of the following schemata: 

- for every i C (n), [--ii]A A [~ii]A ~ [UJA, 
- f o r  every i �9 (n), [r -* 
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3.3 Ax iomat ic s  

Together with the classical tautologies, all the instances of the following schemata 
are axioms of BALn: 

- for every i , j  e (n), [=ij](A ~ B) -~ ([=ij]A ~ [=o]B),  
- for every i e (n), [~ii](A --+ B) --+ ([~ii]A --~ [~ii]B), 
- d -+ [r < r  _4, 

- [ U ] A  -+ 
- for every i , j  E (n), [U]A --+ [ - , j ]A,  
- for every i C (n), [=ii]A A [~ii]A --+ [U]A, 
- for every i e (n), <==-ii> [7~]A -+ [~ii]A, 
- for every i C (n), [=-ii]A -+ A, 
- for every i , j  E (n), A -+ [=--~ij] <~j i> A, 
- for every i , j ,  k C (n), [-~ik]A --+ [=ij][=jk]A. 

Together with the modus ponens, the following schemata are inference rules of 
BAL~: 

- for every i, j E (n), the [-i j]-necessitation rule is: if ~-BALn A then ~-BAL~ 

- for every i E (n), the [~ii]-necessitation rule is: if F-BAL, A then ~-BAL~ [~ii 
]A, 

- the irreflexivity rule is: if B is an atomic formula not in A and [-BAL~ ([5 
]B -+ B) V A then ~-BAL~ A. 

T h e o r e m  2 The theorems of BALn  are valid in every quasi-standard n-arrow 
model. 

The p - s t andard  n-arrow frames are not modally definable in the class of all 
general n-arrow frames. Nevertheless, C-s tandard n-arrow frames can be char- 
acterized by an inference rule: the irreftexivity rule. The irreflexivity rule have 
been introduced by Gabbay  [4] and studied by de Rijke [10]. Usually, the ax- 
iomatization of modal logic does not contain any rule of this kind [9]. If the 
accessibility relation associated to a modal operator  is required to be irrefiexive 
then the irreflexivity rule makes the completeness proof easier. 

3.4 C o m p l e t e n e s s  

This section is devoted to the proof of the completeness of BAL~ for the class of 
all quasi-standard n-arrow models. A formula A is consistent when ~/BAL~ -~A. A 
finite set { A I , . . . ,  An } of formulas is consistent when the formula A1 A . . .  A An 
is consistent. An infinite set of formulas is consistent when every of its finite 
subset is consistent. A set of formulas is maximal when, for every formula A, 
either A or -~A belongs to the set. A set of formulas is a ~-theory if there exists 
an atomic formula B such that  the formula -~([r -+ B) belongs to the set. 
Complicated calculations would lead to the conclusion that  every consistent set 
of formulas is a subset of a maximal consistent ~- theory  (see [2] for details). Let 
W be the set of all the maximal  consistent ~-theories. For every i , j  C (n), let 



49 

-=~j be the binary relation on W defined by F -~j A iff {A: [-~j]A E F} C_ A. 
Direct calculations would lead to the conclusion that,  for every i, j ,  k E (n): 

- for every 1" E W,  F - i i  F, 
- for every F, A E W, F -~j A only if A ~ji  F, 
- for every F, A, �9 E W, F -i3 A and A =jk @ only if F =ik 4~. 

Consequently, ( g ~ - i j )  is a n-arrow frame. For every i E (n), let ~ii be the 
binary relation on W defined by F ~ A iff {,4: [ ~ ] A  E F} C_ A. The 
following three lemmas imply that ,  for every F, A , ~  E W and for every se- 
quence (R1 , . . . ,  Rk), ( $1 , . . . ,  Sl) of elements of {--ij, ~ii},  i fFR~ o . . . o R ~ A  and 
FS~ o . . .  o S~r then either _A = ~ or there exists m E (n) such that  A ~ m  ~- 

L e m m a  10 For every F , A , ~  E W and for every i , j  E (n), if F 7~ii A ~jj 
then either F = q5 or there exists k E (n) such that 1" ~kk qS. 

L e m m a  11 For every F, A E W and for every i , j  E (n), if F =ij A then either 
F = A or there exists k E (n) such that F 7~kk A. 

L e m m a  12 For every F, A E W and for every i E (n), if F ~ii A then there 
exists j E (n) such that A ~jj I". 

Let ~1__2 ~" = (I.'I~ ~ij ,  ~ii). Let m be the valuation on ~fl_2 ~ defined by re(A) = {F: 
F E W and A E F},  A atomic formula. Let ,.~4 = (W, m). Direct calculations 
would lead to the conclusion that,  for every F E W and for every formula ,4, 
F ~..t4 A iff ,4 E F. ,M is the canonical model of BAL~.  Let A be a consistent 
formula. There exists F E W such that  A E F and F ~ , u  A. Let W ~ = {A: 
A E W and there exists a sequence ( R t , . . . ,  Rk) of elements of {--ij, ~ii}  such 
that FR1 o . . .  o RkA} .  Let -i~ ~ i  be the restrictions of - i j ,  ~ii t o  W ~ Direct 
calculations would lead to the conclusion that  ~t__2 ~~ = (W ~ -i~ ~i~ is a general 
n-arrow frame. Let m ~ be the restriction of m to W ~ Let M ~ = (W~176 
Direct calculations would lead to the conclusion that  F ~,~o A. Moreover, for 
every A , ~  E W ~ either A = 4~ or there exists i E (n) such that A ~ii ~. 
Let A E W ~ Since A is a C-theory, then there exists an atomic formula B 
such that -~([r ~ B) E A. Therefore, [r  E A. Consequently, for every 

E W ~ if there exists i E (n) such that  A ~ii q5 then B E ~, -,B ~ 
and A r ~. Therefore, for every A , ~  E W ~ A r �9 iff there exists i E (n) 
such that _A ~ii ~5. Consequently, l,'I,___2 '~ is C-standard. Let it be proved that,  
for every A , ~  E W ~ and for every i E (n), either A ~ii ~ or ~ ~ii ~. If 
neither A ~ii ~ nor A ~ii ~5 then there exists a formula [~ii]A E ~ such that 
.4 r �9 and there exists a formula [~ii]t? E A such that B ~ ~. Consequently, 
[-ii](A V B) A [~ii](A V B) E A and -~(A V B) E ~. Therefore, [U](A V B) E A 
and A V B E ~5 a contradiction. Similarly, direct calculations would lead to the 
conclusion that,  for every A @ E W ~ and for every i E (n), either ~A ~-ii ~ or 
-,A ~ii ~. Consequently, W ~ is quasi-standard. Therefore: 

T h e o r e m  3 BAL~ is complete for the class of all quasi-standard n-arrow mod- 
els, that is to say: the formulas valid in every quasi-standard n-arrow model are 
theorems of BAL~.  
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4 C o l l i n e a r i t y  

Let  n = 3. Col l inear i ty  is one of the  basic  t e r n a r y  re la t ions  be tween  the  poin ts  
of a geomet r ica l  s t ruc tu re .  

4.1 S t r u c t u r e s  o f  c o l l i n e a r i t y  

A structure of eollinearity is a po in t  3-f rame _S = (P, C)  such tha t :  

- for every X,  Y E P ,  C(X, Y, X),  
- for every X,  t~ Z E P ,  C(X, V, Z) only if C()~  X,  Z) ,  
- for every X , Y , Z , T  E P ,  C(X ,Y ,Z )  and  C(X,Y ,T )  only if X = Y or 

C(X, Z, T). 

The  cla.ss of all s t ruc tu res  of col l inear i ty  is deno ted  by Z c .  The  e lements  of P are  
cal led points and  are  deno t ed  by cap i t a l  le t ters .  C is the  re la t ion  of collinearity 
between  the po in ts  of the  re la t iona l  s t ruc ture .  

E x a m p l e  3 The aJfine geometries axiomatized by Szezerba and Tarski [11] are 
structures of collinearity. 

4.2  F r a m e s  o f  c o l l i n e a r i t y  

A frame of collinearity is a 3-ar row frame I I,___[" -- ( W , - - i j )  such tha t ,  for every 
i , j , k ,1E (3): 

- for every x , y  E IV, there  exists  u E W such t h a t  x =-a u, y -~-j2 U and 
X --~i3 U~ 

- for every x, y, z E W ,  there  exists  u E W such t ha t  x -=il u, y ~--j2 U and 
z ----ka u only if the re  exists  v E W such t h a t  y - - j l  v, x --i2 v and  z =-~3 v, 

- for every x, y, z, t E W ,  there  exists  u E W such t h a t  x - - i l  u, y - j 2  ~ and 
z ----k3 u and  the re  exists  v E W such tha t  x = a  v, y ----j2 U and  t =13 v only 
if e i ther  x ~-ij y or the re  exists  w E W such t h a t  x - a  w, z ~k2 w and 

t --13 W. 

The  class of all no rma l  f rames of co l l inear i ty  is deno ted  by  03 c .  

4 .3  S t r u c t u r e s  a n d  f r a m e s  o f  c o l l i n e a r l t y  

Direct  ca lcula t ions  would lead to the  conclusion tha t :  

L e m m a  13 Let S_ be a structure of collinearity. Then W(S_) is a normal frame 
of collinearity. 

L e m m a  14 Let I I" be a normal frame of collinearity. Then S(IV) is a structure 
of eollinearity. 

Therefore:  

T h e o r e m  4 The categories ~ '  and 0c3 are equivalent. 
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4.4 M o d a l  logic of  co l l inear i ty  

This section introduces a modal logic with standard semantics in the class of 
all normal frames of collinearity. A general frame of collinearity consists of a 
non-empty set I,V together with, for every i , j  E (3), a binary relation ~ij o n  

W such that (lI', ---ij) is a frame of collinearity and, for every i C (3), a binary 
relation 7~ii on W. 

L e m m a  15 The quasi-standard flames of collinearity are modally definable in 
the class of all quasi-standard 3-arrow flames by the conjunction of the following 
schemata: 

- for every i , j  C (3), < U > A A B --+<--i1> (<=2j>  AA <=3/>  B), 
- for every i , j , k  E (3), <---i1> (<----2j> AA <--3k> B) --+ 

<=i2>  (<--=lj> AA <=at.> B), 
- for every i , j , k , l  C (3), < - i 1 >  ( < - 2 j >  (AA 

<----j2> (<~1i> BA <----3k> C))A <---3/> D) 
---}<~ij> AV < r  BV <~i1> (<~2k> CA <~-3/> D). 

Together with the axioms of BAL3, all the instances of the previous schemata 
are axioms of B A L f .  

T h e o r e m  5 BAL C is complete for the class of all quasi-standard models of 
collinearity. 

5 S o r t e d  p o i n t  n - f r a m e s  a n d  s o r t e d  n - a r r o w  f r a m e s  

Let n > 2. This section is devoted to the proof of the categorial equivalence 
between sorted point n-frames and sorted n-arrow frames. 

5.1 S o r t e d  po in t  n - f r a m e s  

A sorted point n-flame consists, for every i E (n), of a non-empty set Si together 
with, for every i, j C (n) such that  i r j ,  a binary relation Rij between Si and 
Sj such that: 

- for every i, j E (n) such that i 7~ j and for every X r Si, there exists Y C Sj 
such that  X Rij Y~ 

- for every i, j C (n) such that  i r j and for every X C Si, Y C Sj, if X Rij Y 
then there exists Z1 E $1 , . . . ,  Zn C Sn such that  X = Zi, Y = Zj and, for 
every k, l E (n) such that k r l, Xk Rkl Xl. 

L e m m a  16 For every i , j  E (n) such that i 7~ j and for every X E S i , Y  E Sj, 
if X Rij Y then Y Rji X .  

The class of all sorted point n-frames is denoted by Z ~ and is considered as a 
category with morphisms the usual homomorphisms between relational struc- 
tures. 
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5.2 S o r t e d  n - a r r o w  f r a m e s  

The n-arrow frame I.l_( = (W, --i j) is sorted if: 

- for every U l , . . . ,  Un C W, if, for every i , j  E (n) such that  i ~ j ,  ui - i i  o =_jj 
uj then there exists u E W such that ,  for every i C (n), ui =-ii u. 

The class of all normal sorted n-arrow frames is denoted by ~ .  

5.3 F r o m  s o r t e d  p o i n t  n - f r a m e s  to  s o r t e d  n - a r r o w  f r a m e s  

Let S = (Si,R~j) be a sorted point n-frame. Let W = { ( X 1 , . . . , X ~ ) :  X~ E 
S t , . . . , X n  E Sn and, for every i , j  E (n) such that  i r j,  X~ R~j Xj} .  For 
every i, j E (n), let =i j  be the binary relation on W defined by ( X 1 , . . . ,  Xn) -~ij 
( Y , , . . . ,  Yn) iff Xi = Yj. 

L e m m a  17 W(_S) = (W, - i j )  is a normal sorted n-arrow frame. 

E x a m p l e  4 It can be proved, for every i , j  C (n) such thati 7 ~ j ,  that if SiASj  = 
0 then =ij= 0 and that if S i C_ Sj then ~-ij is serial. 

5.4 F r o m  s o r t e d  n - a r r o w  f r a m e s  t o  s o r t e d  p o i n t  n - f r a m e s  

Let lfl__2' = (W, ~-ij) be a normal sorted n-arrow frame. For every i E (n), let 
Si = {i(u): u E W}. For every i , j  E (n) such that  i r j ,  let R~i be the binary 
relation between Si and Sj defined by i(u) Rii j(v) iff u - i i  o - j j  v. Direct 
calculations would lead to the conclusion that:  

L e m m a  18 S(W)  = (Si, Rij) is a sorted point n-frame. 

E x a m p l e  5 It can be proved, for every i , j  C (n) such that i r j ,  that if=-ij= 0 
then Si M Sj = 0 and that if =-ij is serial then Si C Sj. 

5.5 R e p r e s e n t a t i o n  t h e o r e m s  

Let I4__2 ~ = (II/;--ij) be a normal sorted n-arrow frame and W '  = W(S(W)) .  For 
every u E W, let g(u) = ( l ( u ) , . . . ,  n(u)). Direct calculations would lead to the 
conclusion that  g is an isomorphism from ~}_2" into W' .  Therefore: 

L e m m a  19 W and t'V r are isomorphic. 

Let S_ = (Si ,Ri j )  be a sorted point n-frame and _S' = S(W(S)) .  For every 
X E Si, let f ( X )  = { ( X 1 , . . . , X ~ ) :  X1 e S 1 , . . . , X ~  C Sn, X = Xi and, for 
every j, k C (n) such that  j ~ k, Xj  Rjk Xe}.  Direct calculations would lead to 
the conclusion that  f is an isomorphism from _S into S_'. Consequently: 

L e m m a  20 S and S_ I are isomorphic. 

Therefore: 

T h e o r e m  6 The categories Xn and Ca are equivalent. 
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6 Sor ted  arrow l o g i c  

This section introduces a modal logic with s tandard semantics in the class of all 
normal sorted n-arrow frames. 

6.1 Semantics 

Let A 1 , . . . , A ~  be formulas. Let B1 = true and, for every k _> 1, Bk+l = 
<--(k+U(k+l)><--kk> ([~]Ak A Bk) A AiE(k) <--(k+l)(k+l)><--ii> -~Ai. Let 
,'M = (W, =-ij, ~ii,  m) be a quasi-standard n-arrow model. Direct calculations 
would lead to the conclusion that ,  for every k E (n) and for every x E W, 
x ~ Bk iff there exists x l , . . . ,  xk E W such that  xk = x, xi ~ M  [7s A Bi, 
for every i E (k - 1) and xi - - i i  o --jj Xj, for every i, j E (k) such that  i r j .  
Consequently: 

Lemma 21 The quasi-standard sorted n-arrow flames are modally definable in 
the class of all quasi-standard n-arrow frames by the following schema: 

-- Cn = Bn "---~<=--nn> AiE(n-1) <-:ii> ~Ai .  

Example  6 B2 is logically equivalent to the schema <-22><--11> [#]A1A <-=22><--11> 
-~A1. The schema B3 is equivalent to < - 3 3 > < - 2 2 >  ([#]A2AB2)A <------33><--11> 
-IA 1 A "<~33><~22> "hA 2. 

Together with the axioms of B A L n ,  all the instances of the previous schema are 
axioms of B A L  ~. 

T h e o r e m  7 B A L  n is complete for the class of all quasi-standard sorted n-arrow 
models. 

7 G e o m e t r i c a l  sorted  po int  n - f r a m e s  

Projective structures and orthogonal structures are examples of sorted point 
n-frames. 

7.1 P r o j e c t i v e  g e o m e t r y  

Incidence is one of the basic binary relations between the points and the lines of 
a geometrical structure. 

P r o j e c t i v e  s t r u c t u r e s  A projective structure is a relational structure _S = 
(P, L, in) such that:  

- P A L = O ,  
- for every X, Y E P,  there exists x E L such that  X in x and Y in x, 
- for every x, y E L, there exists X E P such that  X in x and X in y, 
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- for e v e r y X ,  Y E P and for every x, y E L ,  X i n x ,  Y i n x ,  X i n y a n d Y i n  
y only if X = Y or x = y. 

The elements of L are called lines and are denoted by lower case letters, in is the 
relation of incidence between the points and the lines of the relational structure.  
The class of all projective s t ructures  is denoted by s 

E x a m p l e  7 The projective geometries axiomatized by Heyting [7] are projective 
structures. 

A projective structure (P, L, in) is considered as a sorted point 2-frame (St, 52, R12, R.)I) 
where St = P, $2 = L, R12 = in and R21 = in -~. 

P r o j e c t i v e  f r a m e s  A projective frame is a sorted 2-arrow frame l.i," = (W, ----ij) 
such that :  

- -  - - - - 1 2 - -  ~, 
- for every x, y E W,  x ~-11 o -22 o -11 Y, 
- for every x , y  E W,  x =22 o -11 o --22 Y, 
- for every x , y , z , t  E W,  x - ~  0 ~-22 z, y -~11 0 ---22 z ,  x - -11  0 - -22  t and 

Y - t l  o -2.) t only if x -11 Y or z -2.2 t. 

The class of all normal  projective frames is denoted by ~ .  

P r o j e c t i v e  s t r u c t u r e s  a n d  p r o j e c t i v e  f r a m e s  Direct calculations would 
lead to the conclusion that :  

L e m m a  22 Let S_ be a projective structure. Then W(S_) is a normal projective 
frame. 

L e m m a  23 Let II__~" be a normal projective frame. Then S ( W )  is a projective 
structure. 

Therefore: 

T h e o r e m  8 The categories Z'~ and ~ are equivalent. 

P r o j e c t i v e  m o d a l  log ic  This section introduces a modal  logic with s tandard  
semantics in the class of all normal  projective frames. A general projective frame 
consists of a non-empty  set W together  with, for every i, j E (2), a binary relation 
~-ij on I.V such tha t  (II/; _=ij) is a projective frame and, for every i E (2), a binary 
relation ~i'i o n  W. 

L e m m a  24 The quasi-standard projective frames are ,modally definable in the 
class of all quasi-standard sorted 2-arrow frames by the conjunction of the fol- 
lowing schemata: 

- [=12]false, 
-- [----111[~--22][~--11]A --} [ U I A ,  
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- [--22][=11][~22]A --+ [U]A, 
- <--~><---2_~> (AA < - 2 2 > < - ~ >  ( [r  A C)) 

[~11][~22](<~-22> AV [:~22][~11]~)V <~11> C. 

Together  wi th  the  ax ioms of B A L  2, all the  ins tances  of the  previous  s c h e m a t a  
are  ax ioms of B A L ~ .  

T h e o r e m  9 B A L  2 is complete for the class of all quasi-standard projective 
models. 

7 . 2  O r t h o g o n a l  g e o m e t r y  

O r t h o g o n a l i t y  is one of the  basic  b i n a r y  re la t ions  be tween  the  lines of a geomet -  
r ical  s t ruc tu re .  

O r t h o g o n a l  s t r u c t u r e s  An  orthogonal structure is a re la t iona l  s t ruc tu re  S = 
(P, L, in, _L) such tha t :  

- P n L = ~ ,  
- for every X , Y  E P ,  there  exists  x E L such t h a t  X in x and Y in x, 
- for e v e r y X ,  Y C P and  for every x, y E L ,  X i n x ,  Y i n x ,  X i n y a n d Y i n  

y only if X = Y or x = y, 
- for every X E P and  for every  x C L, there  exists  y E L such t h a t  X in y 

and  x _1_ y, 
- for every X C P and for every x, y, z C L ,  X i n y ,  x Z y ,  X i n z a n d x J _ z  

only if y = z, 
- for every x, y E L, x _L y only if y _1_ x. 

• is the  re la t ion  of o r thogona l i t y  be tween  the  lines of the  re la t iona l  s t ruc ture .  
The  class of all o r thogona l  s t ruc tu res  is deno ted  by  Z 3.  

E x a m p l e  8 The orthogonal geometries axiomatized by Goldblatt [6] are orthog- 
onal structures. 

An o r thogona l  s t ruc tu re  (P,L,  i n , •  is cons idered  as a so r t ed  po in t  3-f rame 

(S1, $2, $3, R12,/{13, R21, R23, R31, R32) where  $1 = P ,  $2 = L, $3 = L, Rt2 = 
.in, R13 = in, R9.1 = in - t ,  R~.3 =_L, R31 = i'n ,-1 and  R3~ = •  

O r t h o g o n a l  f r a m e s  An  orthogonal frame is a so r t ed  3-arrow f rame I ~  = 
(lI~ = i j )  such tha t ,  for every i , j ,  k e {2, 3}: 

- -  = 1 2  z 0~ 
- -23  is serial ,  
- =32 is serial ,  
- for every  x , y  C IV, x =-11 o =23 y iff x --11 0 =33 Y, 
- for every x , y  E W,  x ==-1~ o -32 Y i f f x  =11 o =22 Y, 
- for every x , y  r I.V, x =11 o --~j o ---11 g, 
- for every  x , y , z , t  E W,  x ==-l~ o =-u z, y ~-ll o =ii z, z =11 o = j j  t and  

~l =[1 0 = j j  t only if x - - u  Y or z ~-~ij t ,  
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- for every x, y C W, x --11 o --i2 o ~ 3 j  Y, 
- for every x, y, z, t C W, x =11 o _~jj Z, y ----i2 o ----3j Z, X ~--11 o ~-~kk t and 

Y =i2 o =3k t only if z =--jk t ,  
- for every x, y E W, x =i2 o --3j Y only if x =i3 o =2j y. 

The class of all normal orthogonal frames is denoted by ~ ) .  

O r t h o g o n a l  s t r u c t u r e s  a n d  o r t h o g o n a l  f r a m e s  Direct calculations would 
lead to the conclusion that:  

L e m m a  25 Let S_ be an orthogonal structure. Then W(_S) is a normal orthog- 
onal frame. 

L e m m a  26 Let I,~_[ be a normal orthogonal flame. Then S(W) is an orthogonal 
structure. 

Therefore: 

T h e o r e m  10 The categories Z 3 and ~3 o are equivalent. 

O r t h o g o n a l  m o d a l  logic A general orthogonal flame consists of a non-empty 
set W together with, for every i , j  C {1, 2, 3}, a binary relation =ij  on W such 
that  (W, =i j )  is an orthogonal frame and, for every i E (3), a binary relation ~ii 
on W. 

L e m m a  27 The quasi-standard orthogonal flames are modally definable in the 
class of all quasi-standard sorted 3-arrow frames by the conjunction of the fol- 
lowing schemata: 

-[=12]false,  
-- <----23> true, 
- -  <~--32> true, 
- -  [ -11][~33]A ++ [-11][---23]A, 
- [ - - ~ 1 ] [ = ~ 2 ] A  + +  [ - ~ ] [ = ~ ] A ,  

- [=11][- i j ][- l l ]A -+ [U]A, 
-- <----11><--~i,> (AA <------//><--11> ([r --+ [~-11][~--jj](<~--ji> A V [ ~ - j j  

][--11]B)V <-----~11> C,  
- [=n][=i2][-=3j]A --+ [U]A, 
- < - l ~ > < - j j >  (AA < - j 3 > < - 2 i >  [r -~ [-11][---~d(<--kj> A v f-k3 

][-2i]B), 
- [=-~3][-2j]d -~ [---i2][-3~]A. 

Together with the axioms of BAL 3, all the instances of the previous schemata 
are axioms of BAL3o: 

T h e o r e m  11 BAL3o is complete for the class of all quasi-standard orthogonal 
models. 
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8 C o n c l u s i o n  

The methodology presented in this paper  for a modal t reatment  of structures 
of collinearity, projective structures and orthogonal structures can be applied to 
other geometrical structures as well: 

- Structures of betweeness consist of a set of points together with a ternary 
relation of betweeness between points [11]. 

- Projective structures of space consist of a set of points, a set of lines and a set 
of planes together with three binary relations of incidence between points, 
lines and planes. 

However, many  questions remain unsolved: 

- Proof  of the completeness or the incompleteness of B A L  c,  BAL2p and BAL3o 
without the irreflexivity rule. 

- Proof  of the decidability or the undecidability of B A L  C, BAL2p and BAL3o . 
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