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Abstract. Although, in natural language, space modalities are used
as frequently as time modalities, the logic of time is a well-established
branch of modal logic whereas the same cannot be said of the logic of
space. The reason is probably in the more simple mathematical struc-
ture of time: a set of moments together with a relation of precedence.
Such a relational structure is suited to a modal treatment. The structure
of space is more complex: several sorts of geometrical beings as points
and lines together with binary relations as incidence or orthogonality,
or only one sort of geometrical beings as points but ternary relations
as collinearity or betweeness. In this paper, we define a general frame-
work for axiomatizing modal logics which Kripke semantics is based on
geometrical structures: structures of collinearity, projective structures,
orthogonal structures.

1 Introduction

Although, in natural language, space modalities are used as frequently as time
modalities, the logic of time is a well-established branch of modal logic [5]
whereas the same cannot be said of the logic of space. The reason is probably
in the more simple mathematical structure of time: a set of moments together
with a relation of precedence. Such a relational structure is suited to a modal
treatment. The structure of space is more complex: several sorts of geometrical
beings as points and lines together with binary relations as incidence [7] [8] or
orthogonality {6], or only one sort of geometrical beings as points but ternary
relations as collinearity or betweeness [11]. Such relational structures are not
suited to a modal treatment.

Structures of collinearity, first example, consist of a set of points together
with a ternary relation of collinearity between points. They cannot constitute the
standard semantics of the modal logic of collinearity. To overcome this problem,
a frame of collinearity is associated to every structure of collinearity in the
following way. Let S = (P,C) be a structure of collinearity, with P the set of
points and C the ternary relation of collinearity between points. Let 1 be the
graph of the relation C. For every i, j € {1,2, 3}, let =;; be the binary relation on
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W defined by (X1, X, X3) =i (Y1,Y2.Y3) iff X; = Y;. Intuitively, each element
(X,Y,Z) of W can be considered either as X, Y or Z. Let u = (X, X5, X3),
v=(1,Y2,Y3) and w = (Z1, Z3, Z3). The expression (Iz € W)(u =4 zAv =)
TAw =3 ) is equivalent to C(X;,Y;, Zi). Therefore, W(S) = (W, =;;) contains
in some sense the whole information of S. W (S) is the frame of collinearity over
S. It satisfies the properties detailed in section 4.2. A frame of collinearity is
a relational structure of the form (W, =;;) that satisfies the same properties.
It can be proved that any frame of collinearity is isomorphic to a frame of
collinearity over some structure of collinearity and that the set of all structures
of collinearity is categorically equivalent to the set of all frames of collinearity.
Therefore, frames of collinearity can constitute the standard semantics of the
modal logic of collinearity.

Projective structures, second example, consist of a set of points and a set
of lines together with a binary relation of incidence between points and lines.
They cannot constitute the standard semantics of the modal logic of projective
geometry. To overcome this problem, a projective frame is associated to every
projective structure in the following way. Let S = (P, L,in) be a projective
structure, with P the set of points, L the set of lines and in the binary relation
of incidence between points and lines. Let W be the graph of the relation in.
Let =11 and =2 be the binary relations on W defined by (X,z) =11 (Y, y) iff
X =Y and (X, z) =22 (Y,y) iff z = y. Intuitively, each element (X, z) of W can
be considered either as X or z. Let u = (X, z) and v = (Y,y). The expression
u =11 0 =99 v is equivalent to X in y. Therefore, W(S) = (W, =11, =32) contains
in some sense the whole information of S. W(S) is the projective frame over S. It
satisfies the properties detailed in section 7.1.2. A projective frame is a relational
structure of the form (W, =;;,=,2) that satisfies the same properties. It can be
proved that any projective frame is isomorphic to a projective frame over some
projective structure and that the set of all projective structures is categorically
equivalent to the set of all projective frames. Therefore, projective frames can
constitute the standard semantics of the modal logic of projective geometry.

Section 2 introduces point n-frames and n-arrow frames and gives the proof of
their categorial equivalence. Section 3 extends Vakarelov’s basic arrow logic [12]
[13]. Its standard semantics is the set of all n-arrow frames. Section 4 describes
an example of point 3-frames: the structures of collinearity, proves its categorial
equivalence with the associated example of 3-arrow frames: frames of collinearity,
and identifies the modal logic with standard semantics in the set of all frames
of collinearity. Sections 5 and 6 extend the results of sections 2 and 3 to sorted
point n-frames and sorted n-arrow frames. Section 7.1 describes an example of
sorted point 2-frames: the projective structures, proves its categorial equivalence
with the associated example of sorted 2-arrow frames: projective frames, and
identifies the modal logic with standard semantics in the set of all projective
frames. Section 7.2 describes an example of sorted point 3-frames: the orthogonal
structures, proves its categorial equivalence with the associated example of sorted
3-arrow frames: orthogonal frames, and identifies the modal logic with standard
semantics in the set of all orthogonal frames.
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2 Point n-frames and n-arrow frames

Let n > 2 and (n) = {1,...,n}. This section is devoted to the proof of the
categorial equivalence between point n-frames and n-arrow frames.

2.1 Point n-frames

A point n-frame consists of a non-empty set S together with a n-ary relation
R on S such that, for every X € S, there exists X;,...,X,, € S and there
exists i € (n) such that R(Xy,...,X,) and X; = X. The class of all point n-
frames is denoted by X, and is considered as a category with morphisms the
usual homomorphisms between relational structures. Namely, let S = (S, R) and
S’ = (§', R’) be point n-frames. Then f is called a homomorphism from S into
S’ if, for every X,...,X, € S, R(X1,...,X,,) only if R'(f(X1),...,f(Xn)). A
one-to-one f is called an isomorphism from S into S’ if, for every X,,..., X, € S,
R'(f(X1),...,f(Xn)) only if R(X,,..., X,).

2.2 mn-arrow frames

A n-arrow frame consists of a non-empty set W of tips together with n? binary
relations =;; on W such that, for every ¢, 4,k € (n):

~ for every u € W, u =;; u,
— for every u,v € W, v =;; v only if v =; u,
— for every u,v,w € W, u =;; v and v =j; w only if u = w.

The n-arrow frame W = (W, =;;) is normal if:
— for every u,v € W, u = v, for every i € (n), only if u = v.

The class of all normal n-arrow frames is denoted by &, and is considered as
a category with morphisms the usual homomorphisms between relational struc-
tures.

2.3 From point n-frames to n-arrow frames

Let § = (S, R) be a point n-frame. Let W = {(Xi,...,Xn): X1,...,.Xn € S
and R(X1,...,Xn)}. For every i,j € (n), let =;; be the binary relation on W
defined by (X1, ..., Xn) =i (V1,...,Y,) iff X; = Y},

Lemma 1 W(S) = (W, =;;) is a normal n-arrow frame.
Example 1 Suppose n = 3. It can be proved that if, for every XY € S,

R(X,Y, X) then, for every i,j € (3) and for every x,y € W, there existsu € W
such that x = u, y =j2 v and £ =5 u.
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2.4 From n-arrow frames to point n-frames
Let W = (W, =;;) be a normal n-arrow frame. For every ay,...,a, € P(W), if:

— for every 4, j € (n) and for every u,v € W, u € ; and v € ¢ only if u =55 v,
— for every i, € (n) and for every u,v € W, u € o; and u =;; v only if v € aj,
—a1U...Ua, £0

then (ay,...,an) is a generalized point of W. For every 4 € W and for every
i € (n), let ¢(u) = (=41 (u),..., =i, (u)). Direct calculations would lead to the
conclusion that:

Lemma 2 For every u,v € W and for every i,j € (n), i(u) = j(v) iff u=y v.
Lemma 3 For every generalized point (a1....,a,) of W, there exists u € W

and i € (n) such that i(u) = (aq,...,qn,).

Let S be the set of the generalized points of . Let R be the n-ary relation on
S defined by R(Xy,..., X,) iff there exists v € W such that, for every ¢ € (n),
X.i = z(u)

Lemma 4 S(¥) = (S, R) is a point n-frame.

Example 2 Suppose n = 3. It can be proved that if, for every i,j € (3) and for
every x,y € W, there exists u € W such that x =;1 u, y =j u and x =;3 u then,
for every XY € S, R(X,Y, X).

2.5 Representation theorems

Let ¥ = (W, =;;) be a normal n-arrow frame and W' = W (S(W)). For every u €
W, let g(u) = (1(u),...,n{u)). Direct calculations would lead to the conclusion
that g is an isomorphism from W into W'. Therefore:

Lemma 5 W and W' are isomorphic.

Let S = (S,R) be a point n-frame and S’ = S(IV(S)). For every X € S,
let f(X) = (1(X),...,n{X)) where i¢(X) = {{X1,...,Xn): X1,....Xn € S,
R(Xq,...,X,) and X; = X}. Direct calculations would lead to the conclusion
that f is an isomorphism from S into S’. Consequently:

Lemma 6 S and S’ are isomorphic.

Direct calculations would lead to the conclusion that the mapping S: W — S(W")
is a functor from &, into X, and that the mapping W: S — W(S) is a functor
from X, into @,,. Therefore:

Theorem 1 The categories X, and ¢, are equivalent.

3 Basic arrow logic

Let n > 2. This section introduces a modal logic with standard semantics in the
class of all normal n-arrow frames.
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3.1 Language

The linguistic basis of basic arrow logic is the propositional calculus. Let VAR
be the set of its atomic formulas. For every i,j € (n), the modal operator
(=] is added to the standard propositional formalism and, for every ¢ € (n),
the modal operator [#;;] is added to the standard propositional formalism. Let
[#AlA = [Zn]AA .. A[#nn]A and [U)A = AA[#A]A.

3.2 Semantics

A general n-arrow frame consists of a non-empty set W together with, for every
i,j € (n), a binary relation =,; on W such that (W,=;;) is a n-arrow frame
and, for every i € (n), a binary relation #; on W. A general n-arrow frame
W = (W,=i;, %) is #-standard if, for every u,v € W, u # v iff there exists
i € (n) such that u #;; v. A #-standard frame W = (W, =,;,#4) is quasi-
standard if, for every i € (n), #;; is the complement of =,;.

Lemma 7 If the general n-arrow frame W = (W,=;;, %) is quasi-standard
then the n-arrow frame (W,=;;) is normal.

Let W = (W,=;,#:u) be a general n-arrow frame. A wvaluation on W is a
mapping which assigns a subset of W to every atomic formula. A (#-standard,
quasi-standard) general n-arrow model is a structure of the form M = (W, =;;
,#ii,m) where W = (W, =;;, #;,) is a (#-standard, quasi-standard) general n-
arrow frame and m is a valuation on I¥. The satisfiability relation in M between
a formula A and a possible world u € W is defined in the following way:

~ ufEam A uem(d), A atomic formula,

—u |=,\4 -4 iff u b‘éM A,

~uFEM AABiffulEa A and u =0 B,

— for every i,j € (n), u = [=i;]4 iff, for every possible world v € W, u =;; v
only if v = A4,

— for every i € (n), u =aq [#i]4 iff, for every possible world v € W, u #4 v
only if v E=a A.

If M is #-standard then:
Lemma 8 For every formula A and for every possible world w € W :

— u o [A]A iff, for every possible world v € W, u # v only if v Eaq A,
— u a [U)A iff, for every possible world v € W, v [=pq A.

A formula is valid in a general n-arrow model when it is satisfied in every possible
world of this model. A schema is valid in a general n-arrow frame if every instance
of the schema is valid in every model on this frame. A schema is valid in a class
of general n-arrow frames if it is valid in every frame of this class. Let X~ and
2" be two classes of general n-arrow frames. X is modally definable in £’ by a
schema A if, for every frame W € X', A is valid in W if IV € X.

Lemma 9 The quasi-standard n-arrow frames are modally definable in the class
of all #-standard n-arrow frames by the conjunction of the following schemata:

— for every i € (n), [=ulA A [Zuld = [U)4,
— for every i € (n), <=;;> [#]4d - [Zi]A.
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3.3 Axiomatics

Together with the classical tautologies, all the instances of the following schemata
are axioms of BAL,:

— for every i,j € (n), [=4](4 = B) = ([=45]4 = [=4;]B),
- for every i € (n), [Ziu](4d = B) = ([Zu]d — [#4]B),

— A [# <#> 4,

- U4 = [#][#]4,

?

]
— for every i,j € (n), [U]l4d — [=,]4,
— for every i € (n), [=u]A A [;7§u] —1 — [U]4,
— for every i € (n), <=i;> [#]4 — [#ul4,
— for every i € (n), [=4]4 — A,
— for every i,j € (n), A — [_”] <=5> 4,
— for every i, 5,k € (n), [Za]d = [=45][= ]ch'

)
[

Together with the modus ponens, the following schemata are inference rules of

BAL,:

— for every ¢,j € (n), the [=;;]-necessitation rule is: if Fpar, A then Fpar,
(=514,

— for every i € (n), the [#;;]-necessitation rule is: if Fgar, A then Fgar, [Zi
14,

— the irreflexivity rule is: if B is an atomic formula not in 4 and Fpag, ([#
]B — B) Vv 4 then Fear, A.

Theorem 2 The theorems of BAL, are valid in every quasi-standard n-arrow
model.

The #-standard n-arrow frames are not modally definable in the class of all
general n-arrow frames. Nevertheless, #-standard n-arrow frames can be char-
acterized by an inference rule: the irreflexivity rule. The irreflexivity rule have
been introduced by Gabbay [4] and studied by de Rijke [10]. Usually, the ax-
iomatization of modal logic does not contain any rule of this kind [9]. If the
accessibility relation associated to a modal operator is required to be irreflexive
then the irreflexivity rule makes the completeness proof easier.

3.4 Completeness

This section is devoted to the proof of the completeness of BAL,, for the class of
all quasi-standard n-arrow models. A formula A is consistent when /g4y, ~A. A
finite set {41,..., A,} of formulas is consistent when the formula 4, A... A A,
is consistent. An infinite set of formulas is consistent when every of its finite
subset is consistent. A set of formulas is mazimal when, for every formula A,
either A or —A belongs to the set. A set of formulas is a #-theory if there exists
an atomic formula B such that the formula —([#£]B — B) belongs to the set.
Complicated calculations would lead to the conclusion that every consistent set
of formulas is a subset of a maximal consistent #-theory (see [2] for details). Let
W be the set of all the maximal consistent #-theories. For every i,j € (n), let
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=;; be the binary relation on W defined by I' =;; A iff {A: [5;;]A € I'} C A
Direct calculations would lead to the conclusion that, for every 1, j, & € (n):

—forevery ' e W, I'=; I,
—forevery NAeW,'=s,; Aonlyif A= T,
—forevery I'A, ¢ c W, I'=;; Aand A=j, Ponly if I' = &.

Consequently, (W,=;;) is a n-arrow frame. For every ¢ € (n), let #;; be the
binary relation on W defined by I' #; A iff {4: [#4]d € I'} C A. The
following three lemmas imply that, for every I, A4, € W and for every se-
quence (Ry,..., Ry),(S1,...,5) of elements of {=;;, Z:},if 'Ryo...0 Rz A and
I'Sy o... 059 then either A = & or there exists m € (n) such that A Z,,,, .

Lemma 10 For every I'A,® € W and for every i,j € (n), if I #i A #j; @
then either I' = & or there ezists k € (n) such that I’ Zy; .

Lemma 11 For every I'' A € W and for every i,j € (n), if I' =;; A then either
I' = A or there exists k € (n) such that I" £y A.

Lemma 12 For every I'A € W and for every i € (n), if I #;; A then there
exists j € (n) such that A #;; I

Let W = (W, =;,#:). Let m be the valuation on W defined by m(4) = {I":
I' e W and 4 € I'}, A atomic formula. Let M = (W, m). Direct calculations
would lead to the conclusion that, for every I' € W and for every formula A,
=y Aiff A e I'. M is the canonical model of BAL,,. Let 4 be a consistent
formula. There exists I" € W such that A € I" and I' Fp A Let W° = {A:
A € W and there exists a sequence (Ry,..., R;) of elements of {=ij, #i} such
that 'Ry o...0 R A}. Let =0 Fii be the restrictions of =;;, #;; to W°. Direct
calculations would lead to the conclusion that W° = (W°, =, #4) is a general
n-arrow frame. Let m° be the restriction of m to W°. Let M° = (W°,m°).
Direct calculations would lead to the conclusion that I' x40 A. Moreover, for
every 4,9 € W°, either A = & or there exists i € (n) such that A #; &.
Let A € W°. Since A is a #-theory, then there exists an atomic formula B
such that =([#]B — B) € A. Therefore, [#]B,-B € A. Consequently, for every
® € W°, if there exists i € (n) such that A #;; & then B € &, -B ¢ &
and A # &. Therefore, for every 4,8 € W°, A # & iff there exists i € (n)
such that A #;; &. Consequently, W ° is #-standard. Let it be proved that,
for every A, € W° and for every i € (n), either A =; & or A #; . If
neither A =;; @ nor A #;; ¢ then there exists a formula [=ii]4 € A such that
A ¢ & and there exists a formula [#;]B € A such that B ¢ ¢. Consequently,
[=u](AV B) A [£i](AV B) € A and (A V B) € &. Therefore, [U[(AV B) € A
and AV B € &, a contradiction. Similarly, direct calculations would lead to the
conclusion that, for every A, & € W° and for every i € (n), either ~A =;; & or
—A #;; @. Consequently, W° is quasi-standard. Therefore:

Theorem 3 BAL, is complete for the class of all quasi-standard n-arrow mod-

els, that is to say: the formulas valid in every quasi-standard n-arrow model are
theorems of BAL,.
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4 Collinearity

Let n = 3. Collinearity is one of the basic ternary relations between the points
of a geometrical structure.

4.1 Structures of collinearity
A structure of collinearity is a point 3-frame S = (P, C) such that:

— for every X,Y € P, C(X,Y, X),

— forevery XY, Z € P, C(X,Y,Z) only f C(V, X, Z),

~ for every X,Y,Z,T € P, C(X,Y,Z) and C(X,Y,T) only if X = Y or
C(X,Z,T).

The class of all structures of collinearity is denoted by 5. The elements of P are
called points and are denoted by capital letters. C' is the relation of collinearity
between the points of the relational structure.

Example 3 The affine geometries axiomatized by Szczerba and Tarski [11] are
structures of collinearity.

4.2 Frames of collinearity

A frame of collinearity is a 3-arrow frame I~ = (I¥,=;;) such that, for every
i,7,k,1 € (3):

— for every z,y € W, there exists u € W such that  =;; v, y =j» u and
T =43 U,

— for every z,y,z € W, there exists € W such that r =;; u, y =j» v and
z =3 u only if there exists v € W such that y =j; v, x = v and z =3 v,

— for every z,y,2,t € W, there exists v € W such that r =;; u, y =2 u and
z =3 u and there exists v € W such that  =;; v, y =j» v and t =3 v only
if either z =;; y or there exists w € W such that r =;; w, z =¢2 w and
t =3 w.

The class of all normal frames of collinearity is denoted by .

4.3 Structures and frames of collinearity
Direct calculations would lead to the conclusion that:

Lemma 13 Let S be a structure of collinearity. Then W(S) is a normal frame
of collinearity.

Lemma 14 Let W be a normal frame of collinearity. Then S(IV) is a structure
of collinearity.

Therefore:

Theorem 4 The categories X5 and ¥ are equivalent.
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4.4 Modal logic of collinearity

This section introduces a modal logic with standard semantics in the class of
all normal frames of collinearity. A general frame of collinearity consists of a
non-empty set W together with, for every i,j € (3), a binary relation =;; on
W such that (W, =;;) is a frame of collinearity and, for every i € (3), a binary
relation Z;; on W,

Lemma 15 The quasi-standard frames of collinearity are modally definable in
the class of all quasi-standard 3-arrow frames by the conjunction of the following
schemata:

— for everyi,j € (3), <U > AAB =<=1> (<=9;> AN <=3;> B),
— for every i,j,k € (3), <=u> (<=2;> AN <=3:> B) —

<=p> (<Elj> AN <=5 > B),
— for every i,j, k.1 € (3), <=a> (<=2;> (4A

<Zj2> (<Eli> BA <=3> C))/\ <=g3> D)

—<=4> AV <#> BV <=;1> (<=9, > CA <=3> D).

Together with the axioms of B.ALj, all the instances of the previous schemata
are axioms of BALY.

Theorem 5 BALg is complete for the class of all quasi-standard models of
collinearity.

5 Sorted point n-frames and sorted n-arrow frames

Let n > 2. This section is devoted to the proof of the categorial equivalence
between sorted point n-frames and sorted n-arrow frames.

5.1 Sorted point n-frames

A sorted point n-frame consists, for every i € (n), of a non-empty set S; together
with, for every 4,7 € (n) such that i # j, a binary relation R;; between S; and
S; such that:

— for every i, j € (n) such that i # j and for every X € S;, there exists Y € S;
such that X Rij Y,

— for every i, j € (n) such that i # j and for every X € S;,Y € S;,if X R;; Y
then there exists Z; € S1,...,Z, € S,, such that X = Z;, Y = Zj and, for
every k,! € (n) such that k #1, X R X].

Lemma 16 For every i,j € (n) such that i # j and for every X € S;,Y € S;,
zfX Ri]‘ Y thenY Rji X.

The class of all sorted point n-frames is denoted by L™ and is considered as a
category with morphisms the usual homomorphisms between relational struc-
tures.
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5.2 Sorted n-arrow frames
The n-arrow frame W = (W, =;;) is sorted if:

— for every uy,...,un € W, if, for every i, j € (n) such that ¢ # j, u; = 0 =y;
u; then there exists u € W such that, for every ¢ € (n), u; =;; u.

The class of all normal sorted n-arrow frames is denoted by $".

5.3 From sorted point n-frames to sorted n-arrow frames

Let S = (S;, Rij) be a sorted point n-frame. Let W = {(X1,...,X,): X1 €
S1,---, Xy € Sy and, for every 4,5 € (n) such that i # j, X; R;; X,}. For
every i,j € (n), let =;; be the binary relation on W defined by (X, ..., X,) =
(Yi,....Y,) iff X; =V}

Lemma 17 W(S) = (W, =,;) is a normal sorted n-arrow frame.

Example 4 It can be proved, for everyi,j € (n) such thati # j, that if S;NS; =
0 then =;;= 0 and that if S; C S; then =;; is serial.

5.4 From sorted n-arrow frames to sorted point n-frames

Let W = (W,=;;) be a normal sorted n-arrow frame. For every ¢ € (n), let
S; = {i(u): u € W}. For every i,j € (n) such that 7 # j, let R;; be the binary
relation between S; and S; defined by i(u) Ri; j(v) iff u =; o =;; v. Direct
calculations would lead to the conclusion that:

Lemma 18 S(W) = (Si, Ri;) is a sorted point n-frame.

Example 5 It can be proved, for every i,j € (n) such that i # j, that if =;= 0
then S;NS; = 0 and that if =;; is serial then S; C S;.

5.5 Representation theorems

Let W = (W, =;;) be a normal sorted n-arrow frame and W' = W (S(W)). For
every u € W, let g(u) = (1(u),...,n(u)). Direct calculations would lead to the
conclusion that ¢ is an isomorphism from W into W'. Therefore:

Lemma 19 W and W' are isomorphic.

Let S = (S;,R;i;) be a sorted point n-frame and S’ = S(W(S)). For every
X € S, let f(X)={(X1,....X.): X1 € 5,...,X, €85, X =X, and, for
every j,k € (n) such that j # k, X; Rjr Xi}. Direct calculations would lead to
the conclusion that f is an isomorphism from S into S’. Consequently:

Lemma 20 S and S’ are isomorphic.
Therefore:

Theorem 6 The categories X" and " are equivalent.
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6 Sorted arrow logic

This section introduces a modal logic with standard semantics in the class of all
normal sorted n-arrow frames.

6.1 Semantics

Let A4;,..., A, be formulas. Let By = true and, for every k > 1, Bry1 =
<ZE(k+1)(k+1) > <Zkk> ([#]Ak A Bp) A /\ie(k) <=1 (k+1) > <=ii> -A4;. Let
M = (W, =;;, %4, m) be a quasi-standard n-arrow model. Direct calculations
would lead to the conclusion that, for every & € {n) and for every z € W,
z |=am By iff there exists z1,..., x5 € W such that 2 = z, z; Fam [#]4:i A By,
for every ¢ € (k — 1) and z; =; o =j; z;, for every 1,5 € (k) such that ¢ # j.
Consequently:

Lemma 21 The quasi-standard sorted n-arrow frames are modally definable in
the class of all quasi-standard n-arrow frames by the following schema:

— Ch = Bn 2<=Znn> Aje(no1) <Zii> ~4s

Example 6 B, is logically equivalent to the schema <=32><=1;> [#]A1A <=pp><=11>
=A;. The schema Bs is equivalent to <=33><=27> ([#]A2AB2)A <=33><=11>
A A <=3 ><=09> A4,

Together with the axioms of BAL,, all the instances of the previous schema are
axioms of BAL".

Theorem 7 BAL" is complete for the class of all quasi-standard sorted n-arrow
models.

7 Geometrical sorted point n-frames

Projective structures and orthogonal structures are examples of sorted point
n-frames.

7.1 Projective geometry

Incidence is one of the basic binary relations between the points and the lines of
a geometrical structure.

Projective structures A projective structure is a relational structure S =
(P, L,in) such that:

- PNL=40,
— for every X,Y € P, there exists z € L such that X in z and Y in z,
— for every x,y € L, there exists X € P such that X in z and X in y,
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— forevery X,Y € Pandforevervz,y € L, X inz, Y inz, X inyand Y in
yonlyif X =Y orz=y.

The elements of L are called lines and are denoted by lower case letters. in is the
relation of incidence between the points and the lines of the relational structure.
The class of all projective structures is denoted by X%.

Example 7 The projective geometries aziomatized by Heyting [7] are projective
structures.

A projective structure (P, L, in) is considered as a sorted point 2-frame (Sy, S2, Ry, Ra;)
where S} = P, Sy =L, Ri» =in and Ro; = in~L.

Projective frames A projective frame is a sorted 2-arrow frame 1 = (W, =;;)
such that:

- =p=10,

— forevery z,y e W,z =n10=no0=ny,

— forevery z,y € W, £ =33 0 =11 0 =22 ¥,

— for every z,y,z,t € W,z =11 0 =22 2, y =11 0 S0 2, £ =11 © =2 t and
y=po=sntonlyifz=;yorz=at

The class of all normal projective frames is denoted by &%.

Projective structures and projective frames Direct calculations would
lead to the conclusion that:

Lemma 22 Let S be a projective structure. Then W(S) is a normal projective
frame.

Lemma 23 Let W be a normal projective frame. Then S(W) is a projective
structure.

Therefore:

Theorem 8 The categories X% and $3 are equivalent.

Projective modal logic This section introduces a modal logic with standard
semantics in the class of all normal projective frames. A general projective frame
consists of a non-empty set W together with, for every i, j € (2), a binary relation
=,; on W such that (I, =;;) is a projective frame and, for every i € (2). a binary
relation #;; on W.

Lemma 24 The quasi-standard projective frames are modally definable in the
class of all quasi-standard sorted 2-arrow frames by the conjunction of the fol-
lowing schemata:

— [=121false,
- EnlE=Ezl=Euld = [Ul4,
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— [522][511] Ezg}rl — [U}-“l;
- <=1><E> (A <=p><=u> ([FBAC) »
EnlEnl(<=02> AV [=2][=ulB)V <=1> C.

Together with the axioms of BAL?, all the instances of the previous schemata
are axioms of BAL%.

Theorem 9 BAL%L is complete for the class of all quasi-standard projective
models.

7.2 Orthogonal geometry

Orthogonality is one of the basic binary relations between the lines of a geomet-
rical structure.

Orthogonal structures An orthogonal structure is a relational structure S =
(P,L,in, L) such that:

- PNnL=40,

— for every X,Y € P, there exists z € L such that X in z and Y in x,

— forevery X, Y € Pandforeveryz,y € L, X inz,Y inz, X inyand Y in
yonlyif X =Y orxz =y,

— for every X € P and for every x € L, there exists y € L such that X in y
and z L y,

— for every X € P and forevery z,y,2 € L, X iny,z Ly, X inzandz L 2
only if y = z,

— foreveryz,ye L,z Lyonlyify 1 z.

L is the relation of orthogonality between the lines of the relational structure.
The class of all orthogonal structures is denoted by X3.

Example 8 The orthogonal geometries axiomatized by Goldblatt [6] are orthog-
onal structures.

An orthogonal structure (P,L,in, 1) is considered as a sorted point 3-frame
(S1. 89,83, R12, R13, Ra1, Ras, R31, Rsy) where Sy = P, Sy =L, S3 =L, Ri3 =
in, Rizg =1in, Ry = in_l, Rys =1, R = in~! and R3s =1"1

Orthogonal frames An orthogonal frame is a sorted 3-arrow frame W =
(W, =y;) such that, for every 4,7,k € {2,3}:

- =1,=0,

— =»3 is serial,

— =34 is serial,

— forevery z,y e W,z =1 o =gz y iff . =11 0 =33 7,

— forevery z,y e W, x =15 0o =35 y iff x =11 0 =20 y,

— forevery z,y € W, x =11 0 =5 0 =11 y,

— for every z.y.z,t € W, zr =11 0 =45 2, y =11 0 =45 2, 2 =11 0 =55 t and
y=uno=jjtonlyifzr = yorz=t,
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— for every z,y € W, x =11 0 =jp 0 =3; ¥,

— for every z,y,2,t € W, x =13 0 =j; 2,y =ip 0 =35 2, & =11 0 =p; t and
Yy =p o =g tonlyif z = t,

— forevery z,y e W,z =jp0o=sgjyonlyif r =;3 0 =55 9.

The class of all normal orthogonal frames is denoted by &%,.

Orthogonal structures and orthogonal frames Direct calculations would
lead to the conclusion that:

Lemma 25 Let S be an orthogonal structure. Then W(S) is a normal orthog-
onal frame.

Lemma 26 Let W be a normal orthogonal frame. Then S(W) is an orthogonal
structure.

Therefore:

Theorem 10 The categories X3 and &%, are equivalent.

Orthogonal modal logic A general orthogonal frame consists of a non-empty
set W together with, for every 7,j € {1,2,3}, a binary relation =;; on W such
that (W, =;;) is an orthogonal frame and, for every i € (3), a binary relation #;;
on W.

Lemma 27 The quasi-standard orthogonal frames are modally definable in the
class of all quasi-standord sorted 3-arrow frames by the conjunction of the fol-
lowing schemata:

— [=12]false,

— <=93> true,

— <=39> true,

- [=EulEsld ¢ [=n][=s]4,

- [511][522]44 « [511] 32]4,

— [En][=E4lEnld - U4,

- <=1><L=;> (A./\ <= ><=11> ([#]B/\C)) — [511][Ejj](<5ji> AV[E]']'
][Eu]B)V <=11> C,

- [EulEal=s514 = U4,

- ]<[Eli>)<5jj> (AN <=j3><=pi> [#]B) — [511][5kk](<5kj> Av [Ekg

=9; B ,
- [Ea][=25]4 = [Eel(=s]4-

Together with the axioms of BAL3, all the instances of the previous schemata
are axioms of BALY:

——

Theorem 11 BALY) is complete for the class of all quasi-standard orthogonal
models.
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8 Conclusion

The methodology presented in this paper for a modal treatment of structures
of collinearity, projective structures and orthogonal structures can be applied to
other geometrical structures as well:

— Structures of betweeness consist of a set of points together with a ternary
relation of betweeness between points [11].

— Projective structures of space consist of a set of points, a set of lines and a set
of planes together with three binary relations of incidence between points,
lines and planes.

However, many questions remain unsolved:

— Proof of the completeness or the incompleteness of BALY, BAL% and BALY,

without the irreflexivity rule.
— Proof of the decidability or the undecidability of BALS', BAL% and BALY,.
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