
Atomicity Refinement and Trace Reduction Theorems

E. Pascal Gribomont
Institut Montefiore, Universit~ de Li&ge, Sart-Tilman B 28, B-4000 Li&ge (Belgium)

~ribomon@mont ef lore. ulg. ac. be

Abstract . Assertional methods tend to be useable for abstract, coarse~grained
versions of concurrent algorithms~ but quickly become intractable for more real-
istic, finer-grained implementations. Various trace-reduction methods have been
proposed to transfer properties of coarse-grained versions to finer-grained versions.
We show that a more direct approach, involving the explicit construction of an
(inductive) invariant for the finer-grained version, is theoretically more powerful,
and also more appropriate for computer-aided verification.

1 Introduction

Recents improvements in methods and tools for testing the validity of proposi-
tional and predicate logic formulas have revived the interest in assertional methods
for concurrent system verification. Indeed, at least as far as safety properties are
concerned, Hoare's logic and Dijkstra's predicate transformer calculus reduce the
correctness problem for programs to the validity problem for logical formulas.

However, as soon as loops occur in programs, creativity is needed to discover
appropriate invariants. This task is reasonably feasible for coarse-grained, abstract
concurrent systems, but often becomes intractable for fine-grained, reasonably effi-
cient implementations.

A standard technique is to deal first with a coarse-grained version of the system
to be verified, and then to attempt (in a more or less formal way) to adapt the
conclusion to a finer-grained implementation of the system. This is called atomicity
refinement. In this paper, we compare two frequently used techniques for atomicity
refinement, from both theoretical and practical point of view.

The problem solved by these techniques is as follows. Some concurrent system
has been proved correct with respect to some safety property. Some statement is
replaced by an equivalent sequence of more elementary statements. Due to possible
interference between processes, this atomicity refinement is not always correct. How
can such a refinement be validated (or disproved)? Let us consider a two-process
system S, where the (cyclic) concurrent processes are

Loop(S1;S2) and Loop(T1;T2)
There is some initial condition A and some safety property J, validated with some
invariant I. Otherwise stated, there is an assertion I such that A =~ I , I ~ J,
and, for each state a satisfying I, if any of the transitions $1, $2, T1 and T: can be
executed from state a, then the resulting state p also satisfies I. As a consequence,
any S-computation whose initial state satisfies A reaches only states satisfying J.

Now we replace a transition, say T2, by an equivalent sequence, say T'; T" (tran:
sition T2 can lead from state ~1 to state a2 if and only if sequence T'; T" can lead
from ~h to a2)- The question is, is the new system S' still correct w.r.t, the safety
property J ?

There is clearly no problem with primary S'-computations, such that any execu-
tion of T ' is immediately followed by an execution of T", without interference from

312

$1 or $2. Let us call B the assertion which holds in all states but those "between"
some execution of T I and the corresponding execution of T". It is clear that J still
holds in relevant states (those satisfying B), that is, that B =~ J remains true
throughout the computation.

Now, let us consider the general case where some execution(s) of $1 and $2
take(s) place between an execution of T I and an execution of T ' , for instance

$1; T1; T ' ; $2; Tll; TI ; S1; T1; $2; S~ ; T'I ; . . .
It is not always the case that B =~ J remains true throughout the computation.

The trace reduction method guarantees that B =~ J remains a safety property,
provided that T ~ is a right-mover, i.e., the following holds: if (T~; $1) can lead from
some state cr to some state p, then (S1;T t) can also lead from a to p, and the same
with $1 replaced by S~. (Instead of requiring T I to be a right-mover, we can require
T" to be a left-mover.) This method is of easy application and has led to successful
non-trivial designs; it is especially useful to convert centralized concurrent systems
into distributed ones. The drawback is that the method is not complete; some
correct atomicity refinements cannot be validated that way.

The invariant adaptation method consists in finding some invariant I r of 8 I
which reduces to I in every relevant state. This method is complete in the fol-
lowing sense : if J is a safety property of S that remains true in all relevant states
of S ~, then adequate invariants 1" and I ~ exist. T'he knowledge of I is a big help for
the construction of the adapted invariant 1 I, but this construction often turns to be
a complicated task nevertheless.

A usual policy for validating atomicity refinements is therefore to t ry the trace
reduction method first, and, only in case of failure, to try the invariant adaptation
method. The purpose of this paper is to show that success cases for the reduction
method always are elementary cases for the invariant adaptation method, whereas
some elementary cases for the invariant adaptation method are still failure cases
for the reduction method. As a result, it might be better to use only the invariant
adaptation method, especially for computer-aided design/verification.

The paper goes on as follows. An abstract framework for atomicity refinement is
introduced in Section 2, where the trace reduction method is presented as a special
case of the invariant adaptation method. Both methods are compared in a more
general way in Section 3, where success cases for the trace reduction method are
proved to correspond to cases of easy invariant adaptation. Section 4 shows that a
failure case for the reduction method can turn to be an easy case for the invariant
adaptation method. Section 5 is a conclusion and mentions related works.

2 T h e o r e m s a b o u t a t o m i c i t y r e f i n e m e n t

We introduce an abstract framework for atomicity refinement and show that, from
the theoretical point of view, the trace reduction method is a particular case of the
invariant adaptation method. More specifically, we recall the main theorem about
trace reduction and give a theorem connecting the invariant of a system before and
after the atomicity refinement. The former appears as a mere corollary of the latter.

313

2.1 R e l a t i o n a l n o t a t i o n

Let 7~ and ,9 be b inary relations on a non-empty set F , and let ~/E F and A C_/~.
The following nota t ion is used in the sequel.

l r =def {(~ , ~/) : "/ ~ /~} , (identical re la t ion) ,

~;,9 =a~f {('r, ~f) : ~p [(% p) e T~ A (p, ~f) e S]} , (sequential composi t ion) ,

7~ ~ = ~ / l r , 7~ ~+~ = ~ 1 (7~ ;7~) , 7~* =d~f U~_>0T~ ~ , (i teration, closure) ,

~/~ =a~I {~ : (% ~) ~ T~}, AT~ =a~f U~eA P~, (set of successors, pos t se t) .

Comments. A binary relation on F is simply a subset of F x F. The notation ~/~6 usuMly
stands for (% ~) ~ T~. The sequenti~ composition 7~; ~q is also noted ,.q o 7~. Note that
AT2.~ = A(7~;,9). An element 7 is an 7~-predecessor of 6 if ~ is an "R-successor of % that
is, if (% 6) ~ T~.

2.2 Abstract transition systems

An abstract transition system [18, 28] is a couple A t s = (F, {7~1,.. . , T ~ }) where
F is a non -empty state space and where { T r is a finite non-empty set of
actions, i.e., b inary relations on F. A state is an element ~ E F. A predicate is a
subset A C_ F .
Comment. Predicates axe usually represented as assertions, so we will write q, ~ A
("q, satisfies A", "A is true at "y") instead of-), E A. Similaxly, we write -~A, AAB and AVB
instead o f / ~ A , A N B and A U B, respectively. An assertion C is valid if the corresponding
set is F; we write ~ C instead of (VV E F) (7 ~ C); the inclusion A C_ B therefore becomes

(A =r B). Last, the successor set ATs and the reachabflity set ATe* are modelled by
the assertions sp[A;T~] ("strongest postcondition") and sin[A; Ts ("strongest invaxiant")
respectively.

An (A t s , A)-traced computation, or simply a traced computation, is a sequence
C = ('y0, r l , ' n , r 2 , . . . ,r,~, % ~ , . . .) ,

where "Y0 ~ A and, for all i > 0, ri is an Ats -ac t ion (a member of {7~1,. . . , 7 ~ })
such tha t ~i_l r~/ i . The underlying sequence of s tates Cs is a computation, and the
sequence of act ions Ca is a trace. Assertion A is the initial condition.
Comments. The union of a set of actions is an action, so the abstract transition system
(F, {Ts T~}) can be replaced by (F, {T~}), where T~ =de] U~=I 7~,, without changing
the set of computations; a sequence C, --- (-y~) is a computation if ~ is an T~-successor
of ~/i-1, for all i > 0. A computation can be finite if it reaches a state without successor.

An Ats-invariant, or simply an invariant, is a predicate I such tha t every
successor of every s ta te satisfying I also satisfies I ; this is denoted {I} 7~{I}, or
{I} A t s {I} , or ~ (sp[I; 7~] ~ I) . An (Ats , A)-safety property, or simply a safety
property, is a predicate J such that , for every computa t ion Cs = (~0,~/1,.. .), if
~/0 ~ A, then ~/,~ ~ J for all n J

1 In our framework, the connection between Hoaxe's logic and Dijkstra's calculus is simple :
expressions {A}S{B}, ~ (sp[A;S] ~ B) and ~ (A ~ wlp[8;B]) axeequivalent. A
useful property of sp (and wlp) is monotonicity. If 7~1 C_ ~2 and ~ (A1 =~ A2), then

(sp[A~;T~] ~ sp[A2;T~2]). Similarly, if ~ (A2 =~ A~), 7~2 C 7~ and ~ (B~ =~ B2),
then {A1}T~I{B1} implies {A:}T~2{B2}.

314

If ~ (A ~ I) and if I is an invariant, then I is necessarily a safety property, but
it should be emphasized tha t the converse is not t rue: safety propert ies usually
are not invariants. For instance, if A t s is a correct mutual exclusion algori thm,
the "assertion J which expresses mutual exclusion is a safety proper ty but is not an
invariant.
Comment. With the restrictive definition given above, a computation C can be checked
for some safety property by considering only isolated states, and a safety property is
simply (modelled by) a subset of F. Safety properties can be defined in a more general
way [1] and modelled by subsets of/"* (F* denotes the set of finite sequences of states).
However, it is always possible, at least theoretically, to include all the preceding states in
any state of the computation, so the restriction is not essential: any information about
a computation prefix (T0,. .. ,'Y,) can be retrieved from the state 7,~. In practice, special
auxiliary variables, called history variables, are used for that purpose.

The following classical result (an early reference is [9]) asserts the completeness
of the invariant method and states the connection between invariants and safety
properties.
Theorem. The system (N, {7~}) satisfies the safety proper ty 3" for the initial condi-
tion A if and only if an invariant I exists such tha t ~ [(A =~ I) A (I ~ J)].
Sketch of proof. The strongest possible choice for I is sin[A; 7r i.e., the set of s ta tes
tha t can be accessed from A (in finitely many computa t ion steps). This predicate
represents the set of 7r of all s tates satisfying A; it is an invariant, so J
is a safety proper ty if and only if ~ (sin[A; Tr =~ J). []
Comment. Inva~iant are inductive safety properties, which can be proved by an induction
argument. The standard technique for proving a (non-inductive) safety property is to con-
struct a stronger, inductive one (i.e., an invariant). A similar situation frequently occurs in
number theory. If some property P(n) of natural numbers cannot be proved by induction,
it is sometimes possible to discover a stronger property Q(n) that can be proved by induc-
tion. Invariants are also named stable properties, e.g. in [6], where the word "invariant"
refers to a stable property satisfied in some specified set of initial states.

2.3 A t o m J c i t y r e f i n e m e n t : t h e a b s t r a c t f r a m e w o r k

Let A, B be predicates on F , and let O l d = (N,{S,7~}), N e w = (F,{$1,82,7~})
be two abs t rac t transit ion systems. Condition A is the initial condition, and B is
the refinement condition. States satisfying B axe called relevant states; those not
satisfying B are transient states. We assume the following conditions :

1. ~ (A ~ B)~
2. Sl-successors of relevant states are transient states;

3. relevant s tates have no S2-successor;

4. $2-successors of transient states are relevant states;

5. t ransient s ta tes have no Sl-successor;

6. 7~-successors of relevant s tates are relevant states;

7. 7C-successors of t ransient states are transient states;

8. S = 81; 82 (sequential consistency).

315

These conditions 2 guarantee that, in any New-trace, actions ,Sl and S~ appear
strictly in turn, and that S1 appears first. Predicate A is the initial condition of
both Old and N e w (only computations whose initial state satisfies A are of inter-
est). Predicate B is the refinement condition, which is true in relevant states and
false in transient states. Let g = (~0 , r l , '~ l , r2 , . . . , rm,~m, . . .) be a New-traced
Computation (so r~ E {$1,$2, ~}, for all i). A state "yk is relevant if $1 and $2 occur
equally many times in the trace prefix ~ = (r l , . . . ,rk); otherwise, ~k is transient
(and S1 occurs one more time than $2 in ~).
Cornmen~s. We assume the existence of an atomicity refinement condition B. The simplest
and most frequent case of atomicity refinement is the replacement of a transition (s S, s)
by (~o, $1, m) and (m, $2,ll), where $1; $2 is "sequentially equivalent" to S and where rn
is a new label. The natural choice for the refinement condition is B =de/ ~a~ m (the
control does not lie at control point m, between $1 and $2). However, we also require that
Old and New share the same state space F, and therefore the same assertion language.
To ensure this, we assume that the new location predicate at m already existed in the
old assertion language, even if no state satisfying it could be reached. Any assertion J
about Old, in particular the initial condition and the invariant, will be (maybe implicitly)
rewritten as J A "~at m.

A New-trace is primary if every occurrence of 81 is immediately followed by an
occurrence of ,~2- For most practical purposes, primary New-traces can be assimi-
lated to Old-traces. The idea underlying trace reduction theorems is that, provided
some hypotheses are satisfied, every New-trace has an equivalent New-primary
trace, so N e w itself is equivalent to Old. The problem is, the stronger the equiv-
alence notion, the stronger the required hypotheses. As a result, several trace re-
duction theorems have been proposed, with more or less restrictive hypotheses and
equivalence notions.

2.4 T h e o r e m s

The trace reduction method allows to assert that some properties of Old-computa-
tions are preserved in New-computations. Even with restricting to safety properties,
one cannot hope that all of them are preserved. For instance, with the notation
of w 2.3, the refinement condition B is an (Old,A)-safety property (and also an
Old-invariant) but cannot be a (New,A)-safety property since B is false in any
transient state. However, if some hypothesis is satisfied, any Old-safety property J
gives rise to the New-safety property B =~ J. Otherwise stated, safety properties
are preserved in relevant states, but nothing is known about transient states. Such
a result is useful when J is trivially true in transient states, i.e., when -~B ~ J
is valid. This is a very frequent case; for instance, 2-process mutual exclusion and
partial correctness are expressed by assertions that trivially hold in transient states,
since critical states and final states (if any) always are relevant states.

The preservation theorem for safety property is an old result, originating from
the ideas of [18] and [26]. The first formal presentation is probably [12]; [19] and [23]
contain more results about atomicity refinement and the trace reduction method.

2 Conditions 2 to 8 can be expressed as {B}81 {-~B}, {B}82 {false}, {'~B}S2 {'B},
{'~B}81{false}, {B} 7"s {-~B}~{~B}, and sp[X;8] -- sp[sp[Z;81];82] for
all X, respectively. Two useful corollaries are {true} $1 {-~B} and {true} ,~2 {B}.

316

A definition is introduced first :
Def in i t ion . A relation 7s right-commutes with a relation Ts (and relation T~2
le~-corarautes with relation 7s if 7~z; 7~2 C_ 7~2; 7~.

T h e o r e m 1. If Old, New, A and B are as introduced in w 2.3, if J is a predicate
on F and if 81 right-commutes with 7~, then B ~ J is a (New, A)-safety property
if and only if J is an (Old, A)-safety property.
P r o o f o f t h e o r e m 1. The "only if" part is trivial. A direct proof of the "if" part
is given in [12] and [23]; it is also a corollary of theorem 2 given below. []

Comment. Theorem 1 has a dual version, where requirement Sl right-commutes with T~
is replaced by ~q~ left-commutes with 7~.

In order to compare the trace reduction technique and the invariant adaptation
technique, we specify the connection between Old-invariants and New-invariants,
when the reduction hypothesis holds.
T h e o r e m 2. If Old, New and B are as introduced in w 2.3, if I is a predicate on F
such that ~ (I =v B), and if 81; 7~ C_ ~; $1 (that is, $1 right-commutes with T/),
then predicate I v 8p[I; $1] is a New-invariant if and only if I is an Old-invariant.
P r o o f o f t h e o r e m 2. Let �9 be the predicate I v spII; $1]. We first assume that
is a New-invariant, and observe that �9 A B is I . (Indeed, formula �9 A B re-
duces to (I v sp[I;S1]) A B, i .e, to (I A B) v (sp[I;S1] A B), and the second
disjunct is identically false.) From {~} 7~ (r and {B} ~ {B}, we therefore deduce
{I} 7~ (I}; from {4~} 81 (~}, {~} 82 {~} and (true]. $2 {B} we deduce {~} 81; $2 (~}
and {B}S1;S2 (B}, and then {I}$1;$2 (I} , therefore (I } $ (I}. As (I } ~ (I } and
{I} S {I} both hold, I is an Old-invariant.

We now assume that I is an Old-invariant. In order to prove that 4~ is a New-
invariant, we check separately the triples (~} Sz (~}, (~} $2 {~} and {~} 7~ (~}.

1. From the triples {I} St {sp[I; $1]} and {sp[I; $1]} $1 (false}, we deduce
(I V sp[I;S1]}St (sp[I;S1] v false}

2. (B} (/aUe} and (sv[I; $1]} (Z} lead to (B v sPF; S1]} {I v false}

3. Since sp is monotonic, we get from the reduction hypothesis St;7~ _C. 7~; St
sp[I; ($1; n)] =~ sp[I; (7~; St)], i.e., {sp[I; St] } n {sp[sp[I; 7~]; $1] }.
We have also { I } n { I } , hence {1 V sp[I;S1]}7~{I V sp[sp[I;T~];S1]}

In every case the precondition is weaker than ~ and the postcondition is stronger,
so the three required triples follow by monotonicity. (For the third postcondition,
observe that sp[I; ~] =v 1, hence sp[sp[I; 7~]; $1] =~ sp[1; St].)
Comment. Let ~P be the strongest New-invaxia~at which is implied by I~ that is, the predi-
cate sin[I; (T~U$1U82)]. A state ~ satisfies ~P if emd only if there exists a New-computation
(7,~ : n --- 0, 1,. . .) such that 3'o ~ I and V~ = "r for some k > 0. As r is a New-invariant
implied by I, we have ~ (~P =~ ~5)~ besides, ~ (r :=~ k~) also holds, since any state
satisfying r can be chosen as an initial state of computation (if ~/ ~ I) or reached in a
single step (if ~ ~ sp[I;Sz]). This gives an interesting operational interpretation to the
reduction hypothesis: every reachable transient state can be reached from some relevm~t
state in exactly one step.

Comment. Here is the dual version of theorem 2. If Old, New azad B are as introduced
above, if I is a predicate on F such that ~ (I ~ B), and if $2 left-commutes with 7~,

317

then predicate I V wlp[S2; I] is a New-invariant if and only if I is an Old-invariant. The
operator wlp (weakest liberal precondition) is defined as follows: ~/ ~ wlp[Ts J] if and
only if every 7~-successor of 7 satisfies J. Although the computation of wlp[,.~; I] can
be easier than the computation of sp[I; 31], we prefer to use the latter, which leads
to a stronger New-invariant; as a program invariant is a formal description of its
behaviour, the stronger is usually the better.

We can now show that, when the reduction hypothesis holds, the connection be-
tween the safety properties of Old and New is a mere consequence of the connection
between the invariants of Old and New.
Proposi t ion. The "if" part of theorem 1 is a corollary of theorem 2. 3
P roo f . If J is an (Old, A)-safety property, then, due to the completeness of the
invariant method, there exists an Old-invariant I such that ~ (A =~ I) and ~ (I
(B A j)).4 If `91 right-commutes with Ts then (theorem 2), 4~ =d~/ (I v sp[I;$1])
is a New-invariant. Besides, it is easy to check 5 ~ (I =~ ~), ~ (A =~ ~), and

(~ ~ (B =~ J)); as a result B =~ J is a logical consequence of an (initially true)
invariant, and therefore a (New, A)-safety property. []
CommenL The fact ~ (~ =~ (B =~ J)) will be useful later.

3 T r a c e r e d u c t i o n t e c h n i q u e vs . i n v a r i a n t a d a p t a t i o n

In paragraph 2.4, the invariant adaptation method has been used to justify the
trace reduction method. In this section, we would like to show that the invariant
adaptation method can replace the trace reduction method. We will first show that,
when an atomicity refinement can be validated by the trace reduction method, it
can as easily be validated by the invariant adaptation method. Afterwards, we show
that validation by invariant adaptation may happen to be tractable even when the
reduction hypothesis is not satisfied.

3.1 T h e easy case of atomicity refinement

The data of the atomicity refinement problem are F, S, $1, `92, 7~, Old, New, A
and B, satisfying the 8 conditions stated in paragraph 2.3. Furthermore, we suppose
that J is an (Old, A)-safety property, validated by an Old-invariant I. The question
is to determine whether B :~ J is a (New, A)-safety property.

If we use the trace reduction technique, we have to verify that the reduction
hypothesis `91;~ C_ 7~;,91 holds. Theorem 2 asserts that a byproduct of this verifi-
cation is the fact that �9 =d~f (I V 8p[I; ̀ 91]) iS a New-invariant. This fact alone is
sufficient to validate the refinement (last comment of w 2.3). So, instead of checking
whether the reduction hypothesis holds, we can check whether ~5 is a New-invariant.
In fact, we can do a bit less, as indicated by the next theorem.
Theorem 3. The assertion ~ is a New-invariant if and only if the assertion sp[I; `91]
is T~-invariant, i.e., if the triple (sp[I; 81]} T~ {sp[I; $I]} holds.

s Recall that the "only if" part of theorem 1 is trivial.
4 Recall that B characterizes relevant states , and therefore is a safety property of Old;

transient states appear only in New-computations.
5 Just consider separately the cases where 13 is true and where/3 is false; indeed, 4 i can

also be written as (B =~ I) A (-~/3 =~ sp[I;S1]).

318

P r o o f . Let us recall first that the assertion �9 reduces to I when B holds (relevant
states) and to sp[I;,91] when -,B holds (transient states). As a result, # is a New-
invariant if and only if the following triples hold :

1. {)'}T~{/}, 2. {I}Sl{Sp[I; r 3. {sp[I; Sl]}S2{I}, 4. {sp[I; S1]}R{sp[I; 81]}.

Triple 2 is a tautology and triples 1 and 3 express that I is an Old-invariant, so
with this hypothesis triple 4 holds if and only # is a New-invariant. []
Comment. Validity of triple 4 is a weaker condition than the reduction hypothesis (theo-
rem 2); furthermore, its verification can be easier. Indeed, the reduction hypothesis holds
if amd only if the implication

sviP; (&;T~)] ~ ~p[P; (n;&)]
holds for each assertion P, whereas triple 4 can be rewritten in

sp[z; (&;n)] ~ sp[z; &],
i.e., an implication that must be true only for one specific assertion.
The conclusion is, when the trace reduction technique applies, the invariant adap-
tation technique also applies, with no more verification work.

3.2 T h e gene ra l case of a tomic i t y r e f i nemen t

The trace reduction technique might fail to validate a correct atomicity refinement,
since this technique takes all states into account, even unreachable ones. (A notion
of context has been introduced in [2] to deal with this problem.)

However, the invariant method might be useful even when theorem 2 does not
apply. To investigate this, we have the following general theorem, which can be
seen as a completeness theorem for atomicity refinement. It states that an atomicity
refinement is correct if and only if some formula is an invariant.
T h e o r e m 4. If Old, New and B are as introduced above, and if I is an Old-
invariant such that ~ (I =v B), then B ~ f is a (New, I)-safety property if and
only if formula #* "-~'def (I Y sp[I; ($1; 7~*)]) is a New-invariant.
Comment. Even when B => I is a (New,/)-safety property, it is usually not inductive; it
is therefore not a New-invariant, but only the logical consequence of some New-invariant.
Comment. If ,91; 7~ C_ T~;,91, then formula ~* reduces to �9 =def (I V sp[I;,91]).
P r o o f o f t h e o r e m 4. If B ~ I is a (New,/)-safety property, then any reachable
relevant state satisfies I. Let 7 be a reachable transient state; there exist n > 0 and
a traced computation prefix

C =d4 (~/0,S1,~/1,7~,.. . , 'm7~,..-,7~,%+t)
such that 70 ~ I and 7n+1 = 7. As a result, 7 ~ sP[I;(S1;T~n)] and therefore
7 ~ r Any reachable state satisfies ~* and, clearly, any state satisfying ~* is
reachable; so #* is the set of reachable states, and therefore an invariant.
Conversely, if #* is an invariant, it is also the set of reachable states, so all relevant
reachable states satisfy #* A B, that reduces to I. C]
Theorem 4 can be the basis of a complete technique for validating atomicity refine-
ments, but the problem is, computing sp[I; ($1; 7~*)1 is not easy in general.

We can now outline a more general compaxison between trace reduction and
invariant adaptation. Some notation is introduced first.

T. =~4 sp[l; (&;T~)t,
Cq =g~r V~_<~ r~.
U* =dcf VizoTi"

319

The sequence (Un) is monotonic (Un =~ Un+l holds for all n). An atomicity refine-
ment is correct (theorem 4) if and only if I v U* is a New-invariant. A (correct)
refinement is stationary if U* reduces to Un for some n. The preceding theorems
imply that the trace reduction method works only if U0 -- U*; even then, the no-
tion of context introduced in [2] may be needed. The invariant-based technique is
complete but, in practice, the computation of U* is likely to be intractable, except
when U* reduces to Un for a small value of n. Three cases are of special interest :

1. U* reduces to U0 and the trace reduction method does work.
2. U* reduces to U0 and the trace reduction method does not work (except when

contexts are used).
3. U1 is weaker (i.e., greater) than U0, and U* reduces to [/1; the trace reduction

method does not work, but the invariant method remains tractable.

Case 2 is briefly illustrated in paragraph 4, where an example of case 3 is also men-
tioned.

3.3 Computer-aided verif icat ion

CAVEAT [16] is a tool for invariant validation. It also supports atomicity refinement,
in so far only sp-calculus is used to produce in~ariant candidates U0 and [/1. The
practical bottleneck is that atomicity refinement induces quick size growing of the
invariant, and therefore of the verification conditions. The general form of these
conditions in C A V E A T iS (h i . . . hn) =~ C, and the validation module becomes very
slow when n is big. A possible solution is to rank the hypotheses h i , . . . , hn according
to their relevance to the conclusion c. Typically, very few hypotheses are really
relevant, and even an elementary ranking program can speed up the validation
process. Preliminary results are reported in [17].

4 A p p l i c a t i o n s

When some requirements are satisfied, it is possible to solve (approximately) a
fixpoint system of equations (e.g., on the domain of real numbers) like

{x = / (x ,
y = g(x, (1)

in a concurrent way, using two processes X and Y and two boolean variables h=
and h~, initialized to true [5, 11]. The processes are :

Process X

while (h= V h~) do
if x _ / (z , y)
then h= : - false
else x := f (x , y) ;

(h= , h~) := (true, true)

The system terminates when both h=
termination, both conditions e= =g~f
satisfied.

Process Y

while (h= v h~) do

y g(x, y) (2)
then h~ :----false
else y := g(x, y);

(h= , h~) := (true, true)

and h~ are false; we would like that," on
(x ~- f (x , y)) and ey =def (Y ~- g(x, y)) are

320

In the coarser-gained version, there are only two transitions (and a single lo-
cation for each process, say X0 and Y0 respectively). The transitions executed by
process X are

(Xo, (h~ v h~) A e~ ----, h~ := false, Xo),
(X0, (hx Vh~) A -~ex ~ (x, hx,h~):= (f(x,y),true, true), Xo).

Comment. The relevant effect of the statement x := f(x, y) is to assign unknown boolean
values to both conditions e~ and e~.

An appropriate invariant of this coarse-grained version is (hx vex) A (h~ V ey).
This formula is true initially (since h~ and h~ are both true) and respected by all
transitions (h~ and h~ become false only when e~ and ey are true, respectively,
and every time x or y is touched, both variables h~ and h~ become true again). On
termination, the invariaat reduces to e~ A e~.

As a first atomicity refinement, we split the "else" part of process X, i.e., we
replace

(X0, (hx Vh~) A -~ex - ~ (x,h~,h~):= (f(x,y),true, true), Xo).
by

(X0, (h~vhy) A-~e~ ~ x : = f (x , y) , X1),
(X1, (h~, hv) := (true, true), Xo).

It is not possible to apply the reduction principle, since x := f(x,y); y := g(x,y)
and y := g(x, y); x := f(x , y) may lead to distinct states; similarly, (h~, hv) :=
(true, true), in process X, and h~ := false (in process Y) do not commute either.
Nevertheless, the refinement is correct. To see this, we compute the first terms of
the sequence (Tn) introduced in paragraph 3.2.

The data are :

I o : a t X o A atYo A (hx Vex) A (hu Vey)
31 : (X0, (hxVhy) A-~e~ ~ x : = f (x , y) , X1),
/~: T~ U 7~ I, where

~ t =~eI (Y0, (hx V hu) A ey ---. hy := false, Yo),
n] =d~f (Yo, (h~ Vh~) A -~e~ ~ (y, hx,hy):= (g(x,y),true, true), Yo).

For n = 0, the disjunctive term Tn =def sp[I; (81; ~")] reduces to To = sp[Io; 81],
i.e.

at Xt A at Yo A h~.
For n = 1, the disjunctive term sp[Io;(S1;T~)] reduces to Tt = sp[Io; (S1;T~)], and
further to sp[sp[Io; St]; 7~] v sp[sp[Io; St];/~f], that is

at X1 A at Yo A h~ A [(ey A-~h~) V hy],
which further results in

at X1 A at Yo A hz A (e v V hy).
As 2"1 is stronger then To, there is no need to compute further terms; V T,~ reduces
to To. An acceptable invariant is now I1 =~I (Io V To), which can be simplified
into

[(h~ Ve~) A (h~ Ve~)] V (at Xt A h~).
This is an instance of case 2, since U* reduces to U0

Symmetrically, if the "else" part of of process Y is split, then the invariant is
adapted into

321

[(h= ve=) A (h~ V ey)] V (at X1 A h=) v (at Y1 A h~).

A generalized version of algorithm (2) exists, which involves n processes and
allows the distributed solution of n-equation systems. However, the validation of
atomicity refinements becomes more complicated, and involves several instances of
case 3 (see [14] for details).

Comment. It should be emphasized that, for specific concurrent systems, easier validity
proofs can be found for atomicity refinements. This paper is concerned only with the
systematic techniques, applying to a broad class of concurrent systems.

5 C o n c l u s i o n a n d r e l a t e d w o r k

Two widely used methods for the validation of atomicity refinements have been
compared. It is known for a long time that the invariant adaptation method is com-
plete whereas the trace reduction method is not, but also assumed that, in some
cases, the trace reduction method is easier to use. This assumption turns to be false
and, as far as safety properties are concerned, the invariant-based method has defi-
nite advantages. Especially, many refinements encountered in classical examples are
correct but outside the scope of the trace reduction techniques. Note, however, that
the trace reduction method might still be useful to prove properties like termination
and freeness of individual starvation; besides, other reduction methods (relying not
only on traces) have been proposed.

The trace reduction technique has been successfully used especially in the area
of (deterministic) parallel programming [2, 4]. The invariant adaptation technique
is used e.g. in [10, 20]; a systematic presentation is [15]. Incremental construction
of invariants, using approximation sequences like (U,~), originates from [8, 7, 29].
Systematic approaches are [21] and [14].

Our main goal in this paper was. to validate the decision made in CAVEAT, where
the trace reduction method is not implemented (we plan to rely on invariant adap-
tation only). The program notation used in CAVEAT and in this paper is classical
and allows for a convenient version of the reduction theorem and related results.
From the theoretical point of view, however, these problems are better investigated
at a more abstract, purely semantical level. An adequate framework for doing this
is Lamport's TLA (Temporal Logic of Actions). In this formalism, both statements
and assertions are represented as logical formulas; this leads to elegant and general
formulations of results which, like the reduction theorem and other refinement theo-
rems, involve more than one version of a program [22]. (TLA is also appropriate for
more practical problems, especially in program specification; see [22, 25] for more
details.) As pointed out by reviewers, the construction of the invariant of the refined
version of a concurrent system in terms of the invariant of the reduced version can
also be achieved in TLA, at a purely semantic level, as reported in an unpublished
working paper [24]. The form given in the present paper (theorem 2) relies only
on the elementary predicate transformer sp, and not on the higher-level predicate
transformers win and sin used in I24], which cannot be implemented easily as such.

Acknowledgmen t . It is a pleasure to thank Yih-Kuen Tsay for improving the
demonstration of theorem 2, and for a careful and critical reading of the manuscript.

322

R e f e r e n c e s

1. B. Alpern and F. Schneider, Recognizing safety and liveness, Distributed Computing
2 (1987) 117-126.

2. R.-J. Back, A Method for Refining Atomicity in Parallel Algorithms, Lect. Notes in
Comput. Sci. 366 (1989) 199-216.

3. R.-J. Back and R. Kurki-Suonio, Decentralization of Process Nets with Centralized
Control, Distributed Computing 3 (1989) 73-87.

4. R.-J. Back and R. Sere, Stepwise Refinement of Parallel Algorithms, Set. Comput.
Programming 13 (1990) 133-180.

5. E. Best, A Note on the Proof of a Concurrent Program, Inform. Processing lett. 9,
pp. 103-104, 1979

6. K.M. Chandy and J. Misra, Parallel Program Design : A Foundation (Addison-Wesley,
Reading, MA, 1988).

7. E.M. Clarke, Synthesis of Resource Invariants for Concurrent Programs, A CM Trans.
Programming Languages Syst. 2 (1980) 338-358.

8. P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, Proc. 4th ACM
Syrup. on Principles of Pragr. Languages (1977) 238-252.

9. J.W. De Bakker and L.G.L.T. Meertens, On the Completeness of the Inductive As-
sertion Method, Jl. of Computer and Syst Sci. (1975) 323-357.

10. E.W. Dijkstra and al., On-the-Fly Garbage Collection : An Exercise in Cooperation,
Comm. ACM 21 (1978) 966-975,

11. E.W. Dijkstra, Finding the Correctness Proof of a Concurrent Program, Loci. Notes
in Comput. Set. 69 (1979) 24-34.

12. T.W. Doeppner, Parallel Program Correctness Through Refinement, Proe. ~th ACM
Syrup. on Principles of Progr. Languages (1977) 155-169.

13. E.P. Gribomont, Synthesis of parallel programs invariants, Leer. Notes in Comput.
Sci. 186 (1985) 325-338.

14. E.P. Gribomont, Stepwise refinement and concurrency : the finite-state case, Sci. Corn-
put. Programming 14 (1990) 185-228.

15. E.P. Gribomont, Concurrency without toil : a systematic method for parallel program
design, Sci. Comput. Programming 21 (1993) 1-56.

16. E.P. Gribomont and D. Rossetto, CAVEAT: technique and tool for Computer Aided
VErification And Transformation, Lect. Notes in Comp. Sci. 939 (1995) 70-83.

17. E.P. Gribomont, Preprocessing for invariant vMidation~ submitted to AMAST~96.
18. R.M. Keller, Formal Verification of Parallel Programs, C. ACM 19 (1976) 371-384.
19. Y.S. Kwong, On reduction of asynchronous systems, Th. Comp. Sci. 15 (1977) 25-50.
20. L. Lamport, An Assertional Correctness Proof of a Distributed Algorithm, Sci. Corn-

put. Programming 2 (1983) 175-206.
21. L. Lamport, w/n and sin: Predicate Transformers for Concurrency, ACM Trans. Pro-

gramming Languages Syst. 12 (1990) 396-428.
22. L. Lamport, The Temporal Logic of Actions, DEC SRC Report 79, 1989.
23. L. Lamport and F.B. Schneider, Pretending Atomicity, DEC SRC Report 44, 1989.
24. L. Lamport and F.B. Schneider, The Reduction Theorem~ unpublished TLA note,

available on http ://www. research, digital, com/SRC/~la/notes, html, 1992.
25. L. Lamport and al., Introduction, papers and notes about TLA, available on

http ://~w, research, digital, com/SRC/tla/.
26. R.J. Lipton, Reduction : A method of proving properties of parallel programs~ Comm.

ACM 18 (1975) 71%721.
27. G.L. Peterson, Myths about the mutual exclusion problem, Information Proc. Left.

12 (1981) 115-110.
28. J. Sifakis, A unified approach for studying the properties Of transition systems, The.

oret. Comput. Sci. 18 (1982) 227-259.
29. A. van Lamsweerde and M. Sintzoff, Formal derivation of strongly correct concurrent

programs, Acta Inform. 12 (1979) 1-31.

