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Abs t r ac t .  When proving invariance properties of programs one is faced 
with two problems. The first problem is related to the necessity of prov- 
ing tautologies of the considered assertion language, whereas the second 
manifests in the need of finding sufficiently strong invariants. This paper 
focuses on the second problem and describes techniques for the automatic 
generation of invariants. The first set of these techniques is applicable on 
sequential transition systems and allows to derive so-called local invari- 
ants, i.e. predicates which are invariant at some control location. The sec- 
ond is applicable on networks of transition systems and allows to combine 
local invariants of the sequential components to obtain local invariants 
of the global systems. Furthermore, a refined strengthening technique is 
presented that allows to avoid the problem of size-increase of the consid- 
ered predicates which is the main drawback of the usual strengthening 
technique. The proposed techniques are illustrated by examples. 

1 Introduct ion 

Model checking [17, 4, 13, 20] is by now a well-known method for proving prop- 
erties of reactive programs.  The main reason for its success is tha t  it works fully 
automatically,  i.e. without any intervention of the user. The price to pay for this 
feature is that  it can only be applied on finite-state, or restricted classes of infinite 
state, programs.  

On the other hand, there exist deductive methods to prove safety properties 
of reactive programs.  These methods are based on a proof rule which can be 
formulated as follows. To prove that  some given predicate P is an invariant of a 
given program S, i.e. tha t  every reachable state of S satisfies P,  it is necessary 
and sufficient to find a predicate Q with the following properties: 1.) Q is stronger 
than P,  2.) Q is preserved by every transition of S, i.e. for every states s and s', 
if s satisfies Q and s ~ is reachable from s by a transition, then also s ~ satisfies 
Q, and 3.) Q is satisfied by every initial s tate of S. The  predicate Q is called 
auxiliary predicate. 
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Although, this rule is sound and (relatively) complete, it provides only a 
partial answer to the verification problem of safety properties. For it leaves open 
(i) how to find the auxiliary predicate Q and (ii) how to prove that Q is preserved 
by every transition of S and satisfied by the initial states. Problem (ii) is related 
to the problem of proving tautologies of the underlying assertion language. 

In this work, we describe techniques for automatically generating auxiliary 
predicates. We present the following strategies: 

- Generalized reaffirmed invariance: This applies to transitions for which the 
value of the guard and of the expressions occurring on the right hand side 
of its assignment are not changed by the transition itself, i.e. they have the 
same value before and after the transition. This is more general than the one 
called reaffirmed invariants in [15, 14]. 

- Propagation o f  invariants:  This technique allows to propagate an assertion 
that holds whenever control is at some fixed control location to other control 
locations. We consider two instances of this technique. The most general one 
allows to propagate even in the presence of loops. Again our technique is 
applicable in cases not covered by the propagation techniques presented in 
e.g. [15, 14]. 

- Refined strengthening: One of the most used techniques for strengthening 
invariants is by calculating the weakest (liberal) precondition [6] w.r.t, the 
considered invariant and taking it as a conjunct. A drawback of this method 
is that it increases the complexity of the considered predicate, and hence, after 
few steps its application leads in many cases to unmanageable predicates. We 
present a refined version of this method that allows to attenuate the blow up 
caused by applying this useful strengthening method. 

- Combining Invariants:  This method allows to combine invariants developed 
separately for the components of a given network $1 I[ "'" [[ S,  of transition 
systems to an invariant of the global system. 

All predicates that can be generated by these strategies are proved to be invari- 
ant by construction. The use of these techniques for various mutual exclusion 
algorithms shows that they are promising. For instance, in case of the Bakery 
algorithm [12, 15], which is an infinite-state program, we generate an invariant 
that is sufficiently strong to prove the required property. 

It is also important to note that these techniques are local in the sense that, in 
order to apply them, they do not require the full transition system to satisfy some 
restrictions, but rather subsets of control locations and variables are required to 
satisfy some condition. 

The problem of automatically constructing invariants from program descrip- 
tion has been intensively investigated in the seventieth leading to results reported 
in e.g. [11, 9, 3, 7] 3. Here, we present results which are to our knowledge new or 
extensions of existing ones. Other interesting recent results are reported in [2]. 

These techniques represent a n  important component of a tool which is be- 
ing developed to support the computer-aided verification of safety properties of 

3 This list of references is far from being exhaustive. See [15] for other references. 



325 

reactive programs. Here, we give a brief description of this tool (See [10] for a 
detailed discussion). It consists of the following components: 

- P r o n t - e n d :  The front-end takes as input a description of a transition sys- 
tem written as a program in a simple programming language and a predicate 
to be proved as invariant of the described transition system. Then, it pro- 
duces a PVS-theory [16] that  mainly contains the verification conditions to 
be proved. The front-end analyses also the program and generates a file con- 
taining information needed to decide, for each control location, whether some 
invariant generation procedure can be applied. 

- A u t o m a t i c  I n v a r i a n t  G e n e r a t i o n :  This is a module that  contains pro- 
cedures implementing several invariant generation techniques. In this paper, 
we present some of these techniques. 

- P r o o f  M a n a g e r :  The user can try to prove that  P is an invariant fully 
automatically. In this case, the system tries to prove that  P is inductive, that  
is, P is preserved by each transition of the program. In case of success, this 
is reported to the user. Otherwise, the system tries to prove the invariance of 
P using predicates which are obtained by calling some invariant generating 
procedures. These predicates are guaranteed to be invariant by construction. 
In case the system is unable to prove the invariance of P,  it may either do 
some strengthening or enter the interactive modus and requires the user's 
guidance. This choice is made by the user. 

- P V S  is the theorem prover developed at SRI [16]. It is used during the 
automatic- as well as interactive proof procedure to discharge the verification 
conditions. 

2 T r a n s i t i o n  S y s t e m s  a n d  I n v a r i a n c e  P r o p e r t i e s  

We assume an underlying assertion language .4 that  includes first-order predicate 
logic and interpreted symbols for expressing the standard operations and relations 
over some concrete domains. We assume to have the set of integers among these 
domains. Assertions (we also say predicates) in .4 are interpreted in states that  
assign values to the variables of .4. Let 27 denote the set of states. Given a state 
s and a predicate P,  we use the notation s ~ P to denote that  s satisfies P,  and 
use [[P] to denote the set of states that  satisfy P.  Henceforth, we identify P and 
its characteristic set [P] .  

D e f i n i t i o n  1. A transition system is a structure S = (X, pc : DC, T, Init), where 

- X is a finite set {z l  : D 1 , . . . ,  x,~ :Dn}  of typed data variables. Each variable 
xi ranges over data domain Di. We assume that  the variables in X form a 
subset of those in .4. 

- pc is a control variable (or program instruction counter). It ranges over the 
finite domain DC. We assume that  pc q~ X .  

- T is a finite set of transitions. A transition t is characterized by a quadruple 
(pc = d, g(Y),  Z' = e(U) ,  pc' = d') 4, where Y, Z, U _ X. The  variables in 

4 Z' can be empty; this is the case when no variable is affected 
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Z are called the variables affected by transition t, and we denote by sour(t) 
(resp. tar(t)) the value d (resp. d'). These definitions are easily generalized to 
sets of transitions. Given a transition t = (pc = d, g(Y), Z' = e(U) ,  pc' = d'), 
and states s and s', s ~ is called t-successor of s, denoted by s --*t s', if the 
following conditions are satisfied: 1.) s satisfies the enabledness condition 
pc = d A g(Y) of transition t and 2.) s' satisfies s'(zi) = ei(s(V)),  for each 

c z ,  = each with r Z, and s'(pc) = d'. 
- Init is of the form I ( X )  A pc = do. The conjunct I (X )  specifies the initial 

condition on data  variables, whereas pc = do specifies the initial value of the 
control variable. We call I the initial predicate of S and do its initial control 
location. 

A transition system generates a set of sequences of states. Since we are only 
interested in invariance properties, we only consider finite sequences. A finite 
sequence o ~ = so , . . . ,  sn of states is called computation of S, if so satisfies Init 
and, for every i E {0 , . . . ,  n - 1}, there exists a transition t in T with si ---~t si+l. 

To define the semantics of the parallel construct, we define the product of two 
transition systems. Let Si = (Xi,pc~ : DCi, Ti, Initi), for i = 1, 2, be transition 
systems. The product of $1 and S~, denoted $1 ~ )$2 ,  is a transition system 
{X, pc : DC, T, Init), where 

- X = X1 U X2 is the set of program variables. 
- pc ranges over DC = DC1 • DC2. 

[d j d ~ ~ is in T i f f  either - A transition (pc = (dl, d2), g(Y), Z' = e (U) ,pc  = ~ I, 2J~ 
* (pc1 = d l ,g (Y) ,  Z' = e(U),pc~ = d~) E T1 3~d d~ = d2 or 
| (pc2 = d2,g(Y)~ Z' = e(U),pe~ = d~) E T2 and d~ = dl. 

- Init = I1 A I2 Apc = (dl,e, d2,0), where Initi = Ii Apci = dl,o, for i = 1, 2. 

Then, the set of computations of $1 II $2 is defined to be that  of $1 (~ $2. 

Invariance Properties We consider a class of properties, named invariance prop- 
erties (cf. [15]). Intuitively, a property P is an invariant of a transition system S, 
if in each state of the system S this property holds. In other words, each state 
that  is reached during a computation of S satisfies P.  

D e f i n i t i o n 2 .  A state s is called reachable (accessible) in the transition system 
S, if there exists a computation s o , . . . ,  s~ of S such that  s~ = s. We denote the 
set of reachable states by Reach(S). A predicate P is called invariance property 
of S (or invariant of S) if[ Reach(S) C_ IP]. For d E DC, we say that  P is an 
invariant of S at d, if P V -.(pc = d) is an invariant of S. 

Next, we briefly recall the basic idea for proving invariance properties of pro- 
grams. This idea underlies many proof rules formulated in different settings 
(e.g. [8~ 1, 15]). To do so, we recall the definition of some predicate transformers'. 

D e f i n i t i o n 3 .  Given p C" ~ • ZT, the predicate transformers pre[p], ~-e[p], and 
post[p] are defined by pre[p](P) = {s e Z ] 3 s '  E P .  (s, s') E p}, p"~[p](P) = 
-~pre[p](-~P), and post[p](P) = {s' E 57 ] 3s C P .  (s, s') Efl}  
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Thus, pre[p] (P) is the set of predecessors of P by p, post[pl(P) is the set of succes- 
sors of P,  and ~r"~[p](P) is the set of states which either do not have successors by 
p or all their successors are in P.  Note that  the ~-F/[p] and post[p] are the weakest 
liberal precondition and strongest postcondition predicate transformers [6]. 

The main principle used in the literature for proving that  a predicate P is an 
i;nvariant of a system S, consists on finding an auxiliary predicate Q such that  1.) 
Q is stronger than P, 2.) every initial state satisfies Q, and 3.) Q is inductive, 
i.e. for all transitions t E T, we have [Q] _ ~[--+t](Q),  or equivalently, post[---~t 
](Q) c [Q]. 

This proof rule is unsatisfactory because it does not tell us how to find the 
auxiliary predicate Q. Finding Q is often the hard part in the proof of invariance 
properties. 

In the next section, we present a set of techniques that,  given a transition 
system S and a predicate P,  automatically generate an auxiliary predicate that  
is by construction an invariant. In some cases, the generated predicate is strong 
enough to prove that  P is an invariant. 

3 Automatic Generation of Auxiliary Predicates 
In this section we present some o f  the strategies for deriving auxiliary predi- 
cates we implemented in our tool. We concentrate on strategies which are to our 
knowledge new or extensions of strategies presented in other works (e.g. [9, 11, 
15, 14, 2]). The auxiliary predicates derived using our strategies are proved to be 
invariant by construction. 

Generalized Reaffirmed Invariance without Cycles We begin with a strategy that  
can be applied to a control location d to derive an invariant under the assumption 
that  all transitions that  lead to d satisfy some restrictions we define below. This 
is a generalization of the reaffirmed invariance strategy presented in [15, 14]. 

Let S = (X, pc : DC, T, IApc = do) be given. For ~ C_ DC, let L(c~) denote the 
set of transitions t with tar(t) E ~. Thus, L(c~) is the set of transitions changing 
the value of the control variable to a value in ~. We write L(d) instead of L({d}). 

Consider a transition t = (pc = dl, g(Y), Z' = e(V),pc '  = d), with Zr3U = 0. 
Then, for every states s and s', if s ---~t s', then s'(Z) = e(s ' (U)) and s '(U) = 
s(U). This suggests to take the predicate Z = e as invariant at d. 

To formulate the general case, given a transition t as above, we denote by 
aftt) the predicate Z = e(C) and by gu(t), the guard g(Y). Let, for d E DC, 
Asss(d) = V (gu(t) A aftt)), if d r do; and IV  V (gu(t) A aft(t)), if d = do, 

tEL(d) tEL(d) 
where I is the initial predicate of S and do its initial control location. 

L e m m a 4 .  Let S be a given transition system with Init = I A pc = do and 
let D C_ DC be such that for each d C D and transition (pc = dl ,g(Y) ,  Z* = 
e(U),pc '  =' d) in L(d) we have Z M (Y U U) = ~. Then, for each d C D, the 
predicate .Asss(d) is an invariant o r s  at d. 

We can actually formulate a strategy that  generalizes the one above by relaxing 
the condition Z Cl (Y U U) = 0. Let .AssJs(d) be defined as in Figure 1. Then, for 
each d E DC, Asses(d) is an invariant of S at d. Henceforth, let a f f - indep  denote 
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Ass' ( d) = 

V (g,,(t) ^ az(t)) 
teL(a) 
z v V (g.(t) ^ aZ(t)) 

teL(d) 
V  Z(t) 

teL(a) 
I v  V 

teL(d) 

V 
t~ L( a) 
z v V gu( t ) 

teL(d) 
true 

; i f d # d o  a n d Z N ( Y U U ) = O  

; i f d = d o  a n d Z r h ( Y U U ) =  

; i f d # d o , Z N U = g a n d Z N Y # O  

;if  d = do, Z n U = O a n d  Z r h Y # r  

;if d # do, Z N Y = r  and Z r 3 U # O  

;if  d = do, Z n Y  = r and Z r h U  #l~ 

; otherwise 

Fig. t .  Definition of Ass~(d) 

the function that  for a given transition system S returns as result the predicate 

ndeD pc -~ d ~ .Assls (d). 
Generalized Rea]firmed Invariance with Cycles Consider the si tuation described 
in Figure 2. Then, function a f f - i n d e p  yields the predicate x = 2 V y = 1 as 
invariant at d. It  is easy to see, however, that  the stronger predicate x = 2 is also 
invariant at d. We develop a technique that  extends the previous one and covers 
situations similar to that  of Figure 2. 

~ y : = l  

Fig. 2. Generalized Reaffirmed Invariance 

A path from d to d I in S is a sequence d l , t l , ' " , t n - l , d n  with n _> 2, dl = d, 
and dn = d. We say that  a pa th  d l , t l , . .  ", tn- l ,dr ,  from d to d ~ goes through d tl, 
if di = d ' ,  for some i E {1, .~ , n}. 

D e f i n i t i o n 5 .  Given a transition system S, a control location d of S, and a set 
a of control locations of S with d E a .  We say that  a is guarded by d, if the 
following conditions are satisfied: 

- The initial control location of S is not in a or it is d. 
- For every transition t E L(a)  \ {d}, sour(t) e a. 
- Each path  from d to d ~ E a goes only through control locations in a.  

Let Tr(S, a, d) denote the set L(a) \ {t t t e L(d), sour(t) • a}. 

Example 1. Consider the system S given in Figure 3, where do is the initial con- 
trol location. Then, al  = {dl, d2, d3, d4, d~} and a2 = {dl, d4, ds} are guarded by 
dl, while as  = { d l ,  d2, d4, ds} and a4 --" {dl, d2, d3} are not because the second re- 
spectively third condition are violated. We have Tr(S, C~l, dl) = {tl ,  t2, t3, t4, ts, t6} 
and Tr(S, a2, d l ) =  {t4, ts, t6). 

D e f i n i t i o n 6 .  Given a transition system S and d E DC.  We say that  d is safe 
with respect to a set V of variables and a set o~ of control locations, if a is guarded 
by d and for every t E Tr(S, c~, d), t does not affect any variable in, V. 
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Fig. 3. 

Then we have the following lemn'la. 

L e m m a  7. Consider a transition system S, a control location d, a set ~ of control 
locations, and a set V of variables such that d is safe w.r.t. V and ~. Let S ~ denote 
the transition system obtained from S by removing the transitions in Tr( S, ~, d). 
For every predicate Q with free variables V, if Q is an invariant of S I at d, then 
Q is an invariant of S at every d ~ E c~. 
The lemma above suggests a procedure to derive an invariant a t f -cyc(S)  from the 
description of the transition system S: For each d E DC,  determine a maximal  set 

of control locations for which d is safe with respect to the variables affected by 
transitions in {t I t E n(d),  sour(t) ~ a}; in case d is the initial control location, 
we have to check also w.r.t, the free variables of I. If this is the case, record 
Ass~s,(d), where S' is as above, as an invariant of S at d ~ for each d' E ~, 
otherwise, record .Asses (d) as an invariant of S at d. 

Remark. 1. A possible variant of the algorithm af f -cyc  concerns the case where 
the initial control location is considered. Instead of requiring that  d is safe 
w.r.t, the free variables of I,  we hide those which could be affected by some 
transition in Tr(S, ~, d) by existential quantification. 

2. Clearly, determining the maximal set a which is guarded by d and then check- 
ing whether d is safe w.r.t, this set and the variables affected by transitions 
in {t I t  E n(d),  sour(t) ~ c~} .does not always allow to derive the strongest 
possible predicate. One can, however, have a procedure which depends on 
some given set V of variables and which computes the maximal set c~ such 
that  d is safe w.r.t. V and a. 

3. Until now we considered a single transition system S and a t f -cyc  has been 
formulated for this case. When n transition systems S1 II "'" II S,~ in parallel 
are considered, we have to strengthen the notion of d being safe w.r.t, a set V 
of variables and a set a of control locations; and require that  all variables in V 
are only written by the system Si to which d belongs. Henceforth, whenever 
we refer to a t f -cyc  when a parallel program is considered, we mean the 
algorithm obtained by strengthening this notion and taking into account the 
variation suggested in 1. 

Next, we present a technique that  allows to propagate predicates that  have been 
proved to be invariant at some control points of the system, i.e. for some value 
of pc. We first start  with the basic idea. 

Propagation without cycles Given a transition system S, a predicate Q with V 
as free variables and a transition t of S, we say that  transition t does not affect 
Q, if Z A V = 0, where Z are the variables affected by t. 
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Consider a transition system S and a control location d E DC which is not 
the initial one. Let { d l , - . . , d , }  -= sour(L(d)) and assume that,  for each i E 
{1 , . . . ,  n}, Qi(Vi) is an invariant of S at di. If for each t E L(d) and i E {1 , . . . ,  n),  

'~ V with sour(t) = di, t does not affect Vi, then V~=I Q ( i )  is an invariant at d. 
For the case where d is the initial control location, Vin__l Q(Vl) v I, where I is 
~-he initial predicate, is an invariant at d. The correctness of this observation is 
guaranteed by the following lemma. 

L e m m a  8. Consider a transition system S and a predicate P that is an invariant 
orS.  Let d E DC be a control location o r s  with L(d) = { t l , . .  ",tin} and di = 
sour(ti). Let also Q I , . . . , Q m  be predicates such that P A pc = d i  implies Qi, 
with i = 1 , . . . , m .  If  d is not the initial control location of S, then the predicate 

m P A (l = d ~ Vi=l post[--+~,](Qi)) is an invariant of S, otherwise P A (l = d 
(Vi~=l post[~,,](Qi) V I)) is an invariant orS.  

Note that  in case that transition t does not affect Q, we have post[--*t](Q) ~ Q, 
and therefore, the correctness of our technique is implied by the lemma above 
and the fact that  if P '  is an invariant of S and pr implies Q/, then Q' is also an 
invariant of So 

The implementation of this technique is a function, denoted propg,  that takes 
as input a transition system S and a predicate P of the form AdEDC pc ----  d 
Qd(V~). Then, computes for each control location d, the set of variables affected 
by any transition in L(d). Let Va denote the intersection of this set with V~. As 
result, this function yields, for each control location d, as a local invariant at d 
the predicate Qd(V~) A 3Yd.  V ~4d ~, d') �9 

a'eL(a) 
Propagation with cycles Consider now the situation described in Figure 4. An 
application of the simple propagation technique does not allow to strengthen the 
predicate m A~=I pc = di ~ x = i. For, we would add as a conjunct the predicate 
pc = d ~ true v V m i-1 x = i, which is equivalent to true. Yet, it is clear that  
Vim=l x = i is an invariant at d. We develop the next technique which captures 
similar situations. 

?'/2 

" ~ ~  y := e 

x 1 ( ~  y :=e l  

Fig. 4. Propagation with cycles 

Consider a control location d and a set a of control locations which is guarded 
by d. Let {d l , . . . , d ,~}  = sour(L(d)) \ a. Then, if for each i = 1 , . . . , m ,  Q,(Vi) 

r ~  is an invariant of S at di and if d is safe w.r.t. ~Ji=l Vi and a,  we can conclude 
by Lemma 7 and Lemma 8 that  Vi~l Qi(Vi) is an invariant at each d' E a.  

Mixing generalized reaffirmed invariance and propagation Until now we consid- 
ered propagation and reaffirmed invariance separately. Whereas propagation as- 
sumes a given invariant P and propagates local invariants from control locations 
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to others, reaffirmed invariance does not assume such a predicate. We now present 
a technique that  combines propagation and reaffirmed invariance. 

Consider a transition system S and an invariant P of S. Let d be a control 
location of S such that  { t l , . . . t ,~}  = n(d) and d~ = sour(ti), for i = 1 , . . . , m .  
Suppose that  for each i = 1 , . . . ,  m, P A pc = di implies Q~(VI). If, for each 
transition ti and each j with dj = sour(ti), Q~(Vi) implies e(Vl)~ = Ci and 
Zi N Vj = 0, where Zi' = e(Ui) is aff(ti) and (3 is a list of constants, then we 
can conclude that  Vi~=I(Q~(Vi)A Zl = Ci) is invariant at d. Correctness of this 
observation is again a consequence of Lemma 8 and Lemma 8. 

Refined Strengthening Suppose we are given a proposed invariant P for transition 
system S with transitions T. Suppose also that  the proof of P ~ pF~[--*t](P) 
fails for t l , . . . , t , ~ .  The method of strengthening invariants (e.g. [15]) proposes 
to try as next invariant P1 = P A/~=1 ~F~[--+tj(P). Thus, one has to try to 
prove for each transition t the implication P A Q ::~ p~-e[--*t](P A Q), where 
Q = A~=I ~-Fe[--*t,](P). The main drawback of this method is that,  in general, 
each strengthening step increases the size of the considered invariant which in 
some cases leads to unreadable predicates. 

We propose a variant of this method that  is theoretically equivalent, i.e. it 
leads to logically equivalent verification conditions, but which allows to reduce 
the number of applications of ~-~ and to save redoing proofs. 

Suppose that  the at tempt of proving Vt E T .  (P  ~ P-r-~[---*t](P)) fails for the 
transitions t l , . . . ,  tin, and that  one gets subgoals Q1," �9 ", Qm, which are logically 
equivalent to P ~ P~-~[--~t,](P), i = 1 , . . . ,  m. We propose to take in the next step 
the predicate P~ = P AAim__t Qi instead of P1. The next lemma implies soundness 
of our method but also proves that  if P1 is inductive, then also P~. 

L e m m a  9. Let P1 = PAA~=I pTe[--~j(P),  Qi be equivalent to P ==> pr-e[--+t,](P), 
and let P~ = P A Ai~=~ Qi. Then, "P1 and P~ ace equivalent. 

It is worth to note that  soundness of our method does not depend on the fact 
that  Q~ is equivalent to P ~ ~-~[-, , , ](P) but it suffices, if it is stronger. 

To see that  our method indeed avoids the blow-up of the considered pred- 
icates which is due to the repeated application of the predicate transformer 
pr~-~, let us look at the predicates to be considered at step i when each of the 
strengthening and refined strengthening methods are applied in turn. In case 
of the strengthening method one has to consider at step i the predicate Pi = 
P0 A pFe(P0) A...pr~--~'(Pi_l) and to prove P~ ==~ P-~(Pi). In case of the refined 
strengthening method, however, one has to consider the predicate Oi which is 
obtained as a subgoal in step i, and then, to prove Q0 A . . .  A Qi ~ ~-e(Qi). 
Thus, in the refined strengthening method, at each step ~F~ has to be applied 
only once. Another advantage of this method is that  Q~ is usually of the form 
pc = d =~ Q which can be explained by the fact that  Qi is the predicate that  is 
obtained when the proof of Q0 A. . .A  Qi-1 ~ p-r-e(Qi-1) for some fixed transition 
with pc -= d as part of the enabling condition has been attempted. Now, when a 
predicate Q of the form pc = d ==~ Q' is considered in order to prove that  Q is 
preserved by all transitions, it suffices to consider only those in L(d). 
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Combining Invariants Consider a network S = St II "'" II S,, of transition sys- 
tems. Given a predicate P, in order to prove that P is an invariant of S, one can 
calculate the product S1 ( ~ . .  �9 ~ Sn and then prove that P is an invariant of the 
resulting sequential transition system. This method is, however, not applicable 
for large transition systems because of the big size of the obtained system. In- 
deed, the resulting transition system mainly codes all possible interleaving of the 
transition steps in the network S. In this section, we present techniques we use to 
prove invariance properties of networks without calculating the product. These 
techniques have been successfully applied to many mutual exclusion algorithms, 
e.g. the Bakery mutual exclusion algorithm [12, 15] in three different versions and 
Szymanski's mutual exclusion algorithm I18, 19] both parameterized and for two 
processes. 

Def in i t i on l0 .  Given a transition system S, a predicate P is called history- 
independent assertion at d E D e ,  if post[t](true) C ~P] holds for each t E L(d), 
and moreover, if d is the initial control location of S, then Ini t  implies P. 

An history-independent assertion at d is true whenever computation reaches d 
independently on how this happens, in particular it does not dependent on the 
state in which the transition is taken. 

Consider transition systems S1 and $2 with Si = (Xi, pci : DCI, Ti, Ii A pci = 
di,0), for i = 1, 2. Moreover, consider predicates Qi, for i = 1, 2, and (dr, d2) G 
DC1 • DC2. Assume we know that Qi is an history-independent assertion at di. 
Then, we can conclude that QI v Q2 is an invariant of S1 I] $2 at (dr, d2). This 
leads to the following heuristic formulated in the next lemma. 

L e m m a  11. Let Si = (Xi,pci : DCi, Ti, Ii Apci = di,o), for i = I, 2, be transition 
systems and let Qi be predicates. Then, for each (dr, d2) E DCt • DC2 such that 
Qi is an hisfory-independent assertion of St at di, for i = 1,2, the predicate 
Qt vQ2 is an invariant of $1 ]] $2 at (dl,d2). 

If the predicates Qt and Q2 constraint only variables which are affected only 
in St, respectively, $2, then we can even conclude that the stronger predicate 
Qt A Q2 is an invariant at (dr, d2). 

The implementation of both observations above is realized by a single function 
comp which takes as arguments the transition systems 5'1 andS2 as well as 
two predicates P1 and P2 for St and $2, respectively, which are of the form 

A pc = dj =~ P~(dj), i = 1~ 2. The result of the application of this function 
djEDC~ 
is a predicate of the form ]~ pc = d ~ Q(d), where DC = DCt • DC2 and for 

dEDC 
d = (dl, d2), Q(d) is defined in Figure 3. 

Remark. It is worth to note that each invariant Q obtained by applying the 
function aff- indep is history-independent. 

In a concrete implementation, the predicate obtained by an application of the 
function comp,  can be encoded byadding to each local invariant Pi(di) at di .two 
bits. The first one encodes whether Pi(di) is history-independent and the second 
whether it refers to a variable affected in Sj with j # i. 
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[ P~(dl) v P2(d2) ; if for i -- 1, 2, Pi is an history-independent assertion atdi 
and one of the predicates P1 or P2 refers to a variable 
affected in $2 respectively $1 

and predicate P1 respec. Pe does not refer to any variable 
affected in $2 respee. $1 

; otherwise 

Fig. 5. Definition of eomp 

The next lemma shows how given d~ E DCi and a predicate Q that  is history- 
independent at d~, we can deduce a predicate QI which is also history-independent 
at d~ and which does not refer to variables affected in Sj with j ~ i. 

L e m m a 1 2 .  Let $1 and $2 be transition systems and let dl E DC1 (resp. d2 E 
De2)  be a control location of $1 (resp. $2). I f  Q is a history-independent assertion 
at d and Y are the variables occurring in Q which are affected in $2 (resp, $1), 
then 3 Y  �9 Q is a history-independent assertion at d. 

Clearly, the predicate 3Y : D �9 Q does not refer to variables affected in Sj. Let 
abs t  be a function that  takes as arguments two transition systems $1 and $2 and 
a predicate P for $1, and returns a predicate Q for $1 such that  Q is obtained 
from P by applying the observation above. 

Next we present the  tactic we apply to synthesize an invariant from a given 
network $1 II $2. This is presented by an algorithm written in pseudo-code and 
which uses the heuristics presented above. 

Input: $1 [[ $2 
Output: An invariant 

1. Pi := aff-indep(Si); for i = 1,2 
2. P := comp(S1, $2, P1, P2) 
3. Q1 :=abst(S1,S~,P1), Q2 :=abst(S2,S1,P2) 
4. Qi := Qi A propg(Si, Qi), for i = 1,2 
5. return P A Q1 A Q2 

4 E x a m p l e  

The example we consider is the Bakery mutual  exclusion algorithm [12, 15]. Two 
processes are competing to enter their respective critical sections represented by 
location 4. Thus, the invariant we are going to prove is given by the predicate 
I N V  = -~(pcl = 4 A pc2 = 4). 

It can easily be checked that  this invariant is not inductive. Moreover, cal- 
culating the set of reachable states using the post operator does not terminate 
(no fix-point can be reached in a finite number of steps). Calculating the weak- 
est invariance property that  is contained in I N V  does terminate after 8 steps 
(cf. [14]). We can automatically generate by our techniques an invariant that  is 
inductive and that  allows to prove that  I N V  is indeed an invariant. 
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Transition system S~ 
pcl  = l - - ~  pc~ = 2 

pcl  = 2 ~ y~ = y~ + l ,  pc~ = 3 

pc~ -~ 3 A (y2 = O V yl  ~ Y2) --~ PC~ = 4  

pcl  = 4 ~ pc~ = 5 

pc1 = 5 - - -*  y~ =-- O, pc~ = 1  

Transition system $2 
pc2 = 1 ---* pc~ = 2 

pc2 = 2 ~ y~ = yl  + l , pc~  = 3 

pc2 = - 3 A ( y ~  = O V y 2  < Y l ) - - * P C ~ - - - - 4  

pc2 -~- 4 ~ pc~ : 5  

pc2 = 5 ~ y~ -= O, pc~ = 1 

I n i t =  (Yl = Y2 = 0 A p c l  = p c 2  = 1) 

Applying generalized reaffirmed invariance without cycles for $1 (resp. $2) yields 
the predicate P1 (resp. P~) with: 
P1 = (pc1 = 1 ~ yl = 0 v yl = 0 A y~ = 0) ^ (pc1 = 3 m yl = y2 + 1) A 

(pcl  = 4 ~ Y2 = 0 V Yl ~_ Y2) 
P2 = ( p c 2  = 1 =~ Y2 = 0 V y~ = 0 A Y2 = O) A ( p c 2  = 3 =~ Y2 = Yl + 1)A 

(pc2 = 4 ~ yl  = 0 V y2 < yl  ) 

Combining the predicates P1 and P2 according to function comp results in a 
predicate equivalent to 

P = ( p c = ( 1 , 1 ) = ~ y l - - O V y 2 = O )  A(pc=(1,3): :~yl = 0 V y ~ - - Y l + I )  A 
(p~ = (1,4)  -~ yl = 0 v y~ < y l )  ^ (pc(3,1)  ~ yl = y2 + 1 v y2 = 0) A 
(pc = (3, 3) ~ yl = y2 + 1 v y2 = y~ + 1) A (pc = (3, 4) ~ y~ = 0 v y~ < y l )  ^ 
(pc = (4,1)  ~ y~ = 0 v y~ <_ y2) ^ (p~ = ( < 3 )  ~ y~ = 0 v y2 < y~) 

In the sequel, we write p c l  = d l  A p c ~  = d~ for pc  = (dl, d2). 
Next, we apply the abstraction function abs t  on .P1 and P2 to obtain: 

Then, we apply our propagation technique without cycles. It can easily be 
checked that we can propagate from control location 1 to 2, from 3 to 4, and 
from 4 to 5, which yields the following predicates: 
Q~ = (pc~ = l V pcz  = 2 ~ y~ = 0 )  A (pc~ = 3 V pc~ = 4 V pCl = 5 ~ yz > 1) 
Q~ = (pc2 = l V pc~ = l =~z y~ = O ) A (pc~ = 3 V p c 2 =  4 V pe~ = 5 =~ y~ >_ 1) 

Then, we can show P A Q~ A Q~ A I g Y  ~ pr~-~[-*~.](INV),  for each transition 
t o f  S~ I I s ~ .  

5 D i s c u s s i o n  a n d  F u t u r e  W o r k  

This paper provides a set of techniques for the automatic generation of auxiliary 
predicates to prove invariants of programs. The use of these heuristics for the ver- 
ification of various mutual exclusion algorithms shows that they are promising. 
They have been applied to different versions of the Bakery, Dekker, Peterson, and 
Szymanski algorithms (see [15] for a recent presentation of many of these algo: 
rithms and for references). Concerning Szymanski's mutual exclusion algorithm, 
we verified the parameterized as well as the unparameterized case. We intend to 
combine our techniques with others as abstract interpretation [5] to discover re- 
lationships between program variables that can be used to derive invariants and 
to investigate heuristics arid strategies for the decomposition of large programs. 
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