
Powerful Techniques for the Automat ic
Generation of Invariants

Saddek BensMem 1., Yassine Lakhnech 2 **, and Hassen Saidi 1 ~ ,

1 VERIMAG, Miniparc-Zirst, Rue Lavoisier 38330 Montbonnot St-Martin, France.
2 Institut fiir Informatik und Praktische Mathematik Christian-Albrechts-Universitgt

zu Kiel, Preuflerstr. 1-9, D-24105 Kiel, Germany.

Abs t r ac t . When proving invariance properties of programs one is faced
with two problems. The first problem is related to the necessity of prov-
ing tautologies of the considered assertion language, whereas the second
manifests in the need of finding sufficiently strong invariants. This paper
focuses on the second problem and describes techniques for the automatic
generation of invariants. The first set of these techniques is applicable on
sequential transition systems and allows to derive so-called local invari-
ants, i.e. predicates which are invariant at some control location. The sec-
ond is applicable on networks of transition systems and allows to combine
local invariants of the sequential components to obtain local invariants
of the global systems. Furthermore, a refined strengthening technique is
presented that allows to avoid the problem of size-increase of the consid-
ered predicates which is the main drawback of the usual strengthening
technique. The proposed techniques are illustrated by examples.

1 Introduct ion

Model checking [17, 4, 13, 20] is by now a well-known method for proving prop-
erties of reactive programs. The main reason for its success is tha t it works fully
automatically, i.e. without any intervention of the user. The price to pay for this
feature is that it can only be applied on finite-state, or restricted classes of infinite
state, programs.

On the other hand, there exist deductive methods to prove safety properties
of reactive programs. These methods are based on a proof rule which can be
formulated as follows. To prove that some given predicate P is an invariant of a
given program S, i.e. tha t every reachable state of S satisfies P, it is necessary
and sufficient to find a predicate Q with the following properties: 1.) Q is stronger
than P, 2.) Q is preserved by every transition of S, i.e. for every states s and s',
if s satisfies Q and s ~ is reachable from s by a transition, then also s ~ satisfies
Q, and 3.) Q is satisfied by every initial s tate of S. The predicate Q is called
auxiliary predicate.

* Bensalem~imag.fr, Currently visiting the Computer Science Laboratory, SRI
International

** yl@inform atik.uni-kiel.de
*** Saidi~imag.fr

324

Although, this rule is sound and (relatively) complete, it provides only a
partial answer to the verification problem of safety properties. For it leaves open
(i) how to find the auxiliary predicate Q and (ii) how to prove that Q is preserved
by every transition of S and satisfied by the initial states. Problem (ii) is related
to the problem of proving tautologies of the underlying assertion language.

In this work, we describe techniques for automatically generating auxiliary
predicates. We present the following strategies:

- Generalized reaffirmed invariance: This applies to transitions for which the
value of the guard and of the expressions occurring on the right hand side
of its assignment are not changed by the transition itself, i.e. they have the
same value before and after the transition. This is more general than the one
called reaffirmed invariants in [15, 14].

- Propagation o f invariants: This technique allows to propagate an assertion
that holds whenever control is at some fixed control location to other control
locations. We consider two instances of this technique. The most general one
allows to propagate even in the presence of loops. Again our technique is
applicable in cases not covered by the propagation techniques presented in
e.g. [15, 14].

- Refined strengthening: One of the most used techniques for strengthening
invariants is by calculating the weakest (liberal) precondition [6] w.r.t, the
considered invariant and taking it as a conjunct. A drawback of this method
is that it increases the complexity of the considered predicate, and hence, after
few steps its application leads in many cases to unmanageable predicates. We
present a refined version of this method that allows to attenuate the blow up
caused by applying this useful strengthening method.

- Combining Invariants: This method allows to combine invariants developed
separately for the components of a given network $1 I["'" [[S, of transition
systems to an invariant of the global system.

All predicates that can be generated by these strategies are proved to be invari-
ant by construction. The use of these techniques for various mutual exclusion
algorithms shows that they are promising. For instance, in case of the Bakery
algorithm [12, 15], which is an infinite-state program, we generate an invariant
that is sufficiently strong to prove the required property.

It is also important to note that these techniques are local in the sense that, in
order to apply them, they do not require the full transition system to satisfy some
restrictions, but rather subsets of control locations and variables are required to
satisfy some condition.

The problem of automatically constructing invariants from program descrip-
tion has been intensively investigated in the seventieth leading to results reported
in e.g. [11, 9, 3, 7] 3. Here, we present results which are to our knowledge new or
extensions of existing ones. Other interesting recent results are reported in [2].

These techniques represent a n important component of a tool which is be-
ing developed to support the computer-aided verification of safety properties of

3 This list of references is far from being exhaustive. See [15] for other references.

325

reactive programs. Here, we give a brief description of this tool (See [10] for a
detailed discussion). It consists of the following components:

- P r o n t - e n d : The front-end takes as input a description of a transition sys-
tem written as a program in a simple programming language and a predicate
to be proved as invariant of the described transition system. Then, it pro-
duces a PVS-theory [16] that mainly contains the verification conditions to
be proved. The front-end analyses also the program and generates a file con-
taining information needed to decide, for each control location, whether some
invariant generation procedure can be applied.

- A u t o m a t i c I n v a r i a n t G e n e r a t i o n : This is a module that contains pro-
cedures implementing several invariant generation techniques. In this paper,
we present some of these techniques.

- P r o o f M a n a g e r : The user can try to prove that P is an invariant fully
automatically. In this case, the system tries to prove that P is inductive, that
is, P is preserved by each transition of the program. In case of success, this
is reported to the user. Otherwise, the system tries to prove the invariance of
P using predicates which are obtained by calling some invariant generating
procedures. These predicates are guaranteed to be invariant by construction.
In case the system is unable to prove the invariance of P, it may either do
some strengthening or enter the interactive modus and requires the user's
guidance. This choice is made by the user.

- P V S is the theorem prover developed at SRI [16]. It is used during the
automatic- as well as interactive proof procedure to discharge the verification
conditions.

2 T r a n s i t i o n S y s t e m s a n d I n v a r i a n c e P r o p e r t i e s

We assume an underlying assertion language .4 that includes first-order predicate
logic and interpreted symbols for expressing the standard operations and relations
over some concrete domains. We assume to have the set of integers among these
domains. Assertions (we also say predicates) in .4 are interpreted in states that
assign values to the variables of .4. Let 27 denote the set of states. Given a state
s and a predicate P, we use the notation s ~ P to denote that s satisfies P, and
use [[P] to denote the set of states that satisfy P. Henceforth, we identify P and
its characteristic set [P] .

D e f i n i t i o n 1. A transition system is a structure S = (X, pc : DC, T, Init), where

- X is a finite set {z l : D 1 , . . . , x,~ :Dn} of typed data variables. Each variable
xi ranges over data domain Di. We assume that the variables in X form a
subset of those in .4.

- pc is a control variable (or program instruction counter). It ranges over the
finite domain DC. We assume that pc q~ X .

- T is a finite set of transitions. A transition t is characterized by a quadruple
(pc = d, g(Y), Z' = e(U) , pc' = d') 4, where Y, Z, U _ X. The variables in

4 Z' can be empty; this is the case when no variable is affected

326

Z are called the variables affected by transition t, and we denote by sour(t)
(resp. tar(t)) the value d (resp. d'). These definitions are easily generalized to
sets of transitions. Given a transition t = (pc = d, g(Y), Z' = e(U) , pc' = d'),
and states s and s', s ~ is called t-successor of s, denoted by s --*t s', if the
following conditions are satisfied: 1.) s satisfies the enabledness condition
pc = d A g(Y) of transition t and 2.) s' satisfies s'(zi) = ei(s(V)), for each

c z , = each with r Z, and s'(pc) = d'.
- Init is of the form I (X) A pc = do. The conjunct I (X) specifies the initial

condition on data variables, whereas pc = do specifies the initial value of the
control variable. We call I the initial predicate of S and do its initial control
location.

A transition system generates a set of sequences of states. Since we are only
interested in invariance properties, we only consider finite sequences. A finite
sequence o ~ = so , . . . , sn of states is called computation of S, if so satisfies Init
and, for every i E {0 , . . . , n - 1}, there exists a transition t in T with si ---~t si+l.

To define the semantics of the parallel construct, we define the product of two
transition systems. Let Si = (Xi,pc~ : DCi, Ti, Initi), for i = 1, 2, be transition
systems. The product of $1 and S~, denoted $1 ~)$2 , is a transition system
{X, pc : DC, T, Init), where

- X = X1 U X2 is the set of program variables.
- pc ranges over DC = DC1 • DC2.

[d j d ~ ~ is in T i f f either - A transition (pc = (dl, d2), g(Y), Z' = e (U) ,pc = ~ I, 2J~
* (pc1 = d l ,g (Y) , Z' = e(U),pc~ = d~) E T1 3~d d~ = d2 or
| (pc2 = d2,g(Y)~ Z' = e(U),pe~ = d~) E T2 and d~ = dl.

- Init = I1 A I2 Apc = (dl,e, d2,0), where Initi = Ii Apci = dl,o, for i = 1, 2.

Then, the set of computations of $1 II $2 is defined to be that of $1 (~ $2.

Invariance Properties We consider a class of properties, named invariance prop-
erties (cf. [15]). Intuitively, a property P is an invariant of a transition system S,
if in each state of the system S this property holds. In other words, each state
that is reached during a computation of S satisfies P.

D e f i n i t i o n 2 . A state s is called reachable (accessible) in the transition system
S, if there exists a computation s o , . . . , s~ of S such that s~ = s. We denote the
set of reachable states by Reach(S). A predicate P is called invariance property
of S (or invariant of S) if[Reach(S) C_ IP]. For d E DC, we say that P is an
invariant of S at d, if P V -.(pc = d) is an invariant of S.

Next, we briefly recall the basic idea for proving invariance properties of pro-
grams. This idea underlies many proof rules formulated in different settings
(e.g. [8~ 1, 15]). To do so, we recall the definition of some predicate transformers'.

D e f i n i t i o n 3 . Given p C" ~ • ZT, the predicate transformers pre[p], ~-e[p], and
post[p] are defined by pre[p](P) = {s e Z] 3 s ' E P . (s, s') E p}, p"~[p](P) =
-~pre[p](-~P), and post[p](P) = {s' E 57] 3s C P . (s, s') Efl}

327

Thus, pre[p] (P) is the set of predecessors of P by p, post[pl(P) is the set of succes-
sors of P, and ~r"~[p](P) is the set of states which either do not have successors by
p or all their successors are in P. Note that the ~-F/[p] and post[p] are the weakest
liberal precondition and strongest postcondition predicate transformers [6].

The main principle used in the literature for proving that a predicate P is an
i;nvariant of a system S, consists on finding an auxiliary predicate Q such that 1.)
Q is stronger than P, 2.) every initial state satisfies Q, and 3.) Q is inductive,
i.e. for all transitions t E T, we have [Q] _ ~[--+t](Q), or equivalently, post[---~t
](Q) c [Q].

This proof rule is unsatisfactory because it does not tell us how to find the
auxiliary predicate Q. Finding Q is often the hard part in the proof of invariance
properties.

In the next section, we present a set of techniques that, given a transition
system S and a predicate P, automatically generate an auxiliary predicate that
is by construction an invariant. In some cases, the generated predicate is strong
enough to prove that P is an invariant.

3 Automatic Generation of Auxiliary Predicates
In this section we present some o f the strategies for deriving auxiliary predi-
cates we implemented in our tool. We concentrate on strategies which are to our
knowledge new or extensions of strategies presented in other works (e.g. [9, 11,
15, 14, 2]). The auxiliary predicates derived using our strategies are proved to be
invariant by construction.

Generalized Reaffirmed Invariance without Cycles We begin with a strategy that
can be applied to a control location d to derive an invariant under the assumption
that all transitions that lead to d satisfy some restrictions we define below. This
is a generalization of the reaffirmed invariance strategy presented in [15, 14].

Let S = (X, pc : DC, T, IApc = do) be given. For ~ C_ DC, let L(c~) denote the
set of transitions t with tar(t) E ~. Thus, L(c~) is the set of transitions changing
the value of the control variable to a value in ~. We write L(d) instead of L({d}).

Consider a transition t = (pc = dl, g(Y), Z' = e(V),pc ' = d), with Zr3U = 0.
Then, for every states s and s', if s ---~t s', then s'(Z) = e(s ' (U)) and s '(U) =
s(U). This suggests to take the predicate Z = e as invariant at d.

To formulate the general case, given a transition t as above, we denote by
aftt) the predicate Z = e(C) and by gu(t), the guard g(Y). Let, for d E DC,
Asss(d) = V (gu(t) A aftt)), if d r do; and IV V (gu(t) A aft(t)), if d = do,

tEL(d) tEL(d)
where I is the initial predicate of S and do its initial control location.

L e m m a 4 . Let S be a given transition system with Init = I A pc = do and
let D C_ DC be such that for each d C D and transition (pc = dl ,g(Y) , Z* =
e(U),pc ' =' d) in L(d) we have Z M (Y U U) = ~. Then, for each d C D, the
predicate .Asss(d) is an invariant o r s at d.

We can actually formulate a strategy that generalizes the one above by relaxing
the condition Z Cl (Y U U) = 0. Let .AssJs(d) be defined as in Figure 1. Then, for
each d E DC, Asses(d) is an invariant of S at d. Henceforth, let a f f - indep denote

328

Ass' (d) =

V (g,,(t) ^ az(t))
teL(a)
z v V (g.(t) ^ aZ(t))

teL(d)
V Z(t)

teL(a)
I v V

teL(d)

V
t~ L(a)
z v V gu(t)

teL(d)
true

; i f d # d o a n d Z N (Y U U) = O

; i f d = d o a n d Z r h (Y U U) =

; i f d # d o , Z N U = g a n d Z N Y # O

;if d = do, Z n U = O a n d Z r h Y # r

;if d # do, Z N Y = r and Z r 3 U # O

;if d = do, Z n Y = r and Z r h U #l~

; otherwise

Fig. t . Definition of Ass~(d)

the function that for a given transition system S returns as result the predicate

ndeD pc -~ d ~ .Assls (d).
Generalized Rea]firmed Invariance with Cycles Consider the si tuation described
in Figure 2. Then, function a f f - i n d e p yields the predicate x = 2 V y = 1 as
invariant at d. It is easy to see, however, that the stronger predicate x = 2 is also
invariant at d. We develop a technique that extends the previous one and covers
situations similar to that of Figure 2.

~ y : = l

Fig. 2. Generalized Reaffirmed Invariance

A path from d to d I in S is a sequence d l , t l , ' " , t n - l , d n with n _> 2, dl = d,
and dn = d. We say that a pa th d l , t l , . . ", tn- l ,dr , from d to d ~ goes through d tl,
if di = d ' , for some i E {1, .~ , n}.

D e f i n i t i o n 5 . Given a transition system S, a control location d of S, and a set
a of control locations of S with d E a . We say that a is guarded by d, if the
following conditions are satisfied:

- The initial control location of S is not in a or it is d.
- For every transition t E L(a) \ {d}, sour(t) e a.
- Each path from d to d ~ E a goes only through control locations in a.

Let Tr(S, a, d) denote the set L(a) \ {t t t e L(d), sour(t) • a}.

Example 1. Consider the system S given in Figure 3, where do is the initial con-
trol location. Then, al = {dl, d2, d3, d4, d~} and a2 = {dl, d4, ds} are guarded by
dl, while as = { d l , d2, d4, ds} and a4 --" {dl, d2, d3} are not because the second re-
spectively third condition are violated. We have Tr(S, C~l, dl) = {tl , t2, t3, t4, ts, t6}
and Tr(S, a2, d l) = {t4, ts, t6).

D e f i n i t i o n 6 . Given a transition system S and d E DC. We say that d is safe
with respect to a set V of variables and a set o~ of control locations, if a is guarded
by d and for every t E Tr(S, c~, d), t does not affect any variable in, V.

329

Fig. 3.

Then we have the following lemn'la.

L e m m a 7. Consider a transition system S, a control location d, a set ~ of control
locations, and a set V of variables such that d is safe w.r.t. V and ~. Let S ~ denote
the transition system obtained from S by removing the transitions in Tr(S, ~, d).
For every predicate Q with free variables V, if Q is an invariant of S I at d, then
Q is an invariant of S at every d ~ E c~.
The lemma above suggests a procedure to derive an invariant a t f -cyc(S) from the
description of the transition system S: For each d E DC, determine a maximal set

of control locations for which d is safe with respect to the variables affected by
transitions in {t I t E n(d), sour(t) ~ a}; in case d is the initial control location,
we have to check also w.r.t, the free variables of I. If this is the case, record
Ass~s,(d), where S' is as above, as an invariant of S at d ~ for each d' E ~,
otherwise, record .Asses (d) as an invariant of S at d.

Remark. 1. A possible variant of the algorithm af f -cyc concerns the case where
the initial control location is considered. Instead of requiring that d is safe
w.r.t, the free variables of I, we hide those which could be affected by some
transition in Tr(S, ~, d) by existential quantification.

2. Clearly, determining the maximal set a which is guarded by d and then check-
ing whether d is safe w.r.t, this set and the variables affected by transitions
in {t I t E n(d), sour(t) ~ c~} .does not always allow to derive the strongest
possible predicate. One can, however, have a procedure which depends on
some given set V of variables and which computes the maximal set c~ such
that d is safe w.r.t. V and a.

3. Until now we considered a single transition system S and a t f -cyc has been
formulated for this case. When n transition systems S1 II "'" II S,~ in parallel
are considered, we have to strengthen the notion of d being safe w.r.t, a set V
of variables and a set a of control locations; and require that all variables in V
are only written by the system Si to which d belongs. Henceforth, whenever
we refer to a t f -cyc when a parallel program is considered, we mean the
algorithm obtained by strengthening this notion and taking into account the
variation suggested in 1.

Next, we present a technique that allows to propagate predicates that have been
proved to be invariant at some control points of the system, i.e. for some value
of pc. We first start with the basic idea.

Propagation without cycles Given a transition system S, a predicate Q with V
as free variables and a transition t of S, we say that transition t does not affect
Q, if Z A V = 0, where Z are the variables affected by t.

330

Consider a transition system S and a control location d E DC which is not
the initial one. Let { d l , - . . , d , } -= sour(L(d)) and assume that, for each i E
{1 , . . . , n}, Qi(Vi) is an invariant of S at di. If for each t E L(d) and i E {1 , . . . , n),

'~ V with sour(t) = di, t does not affect Vi, then V~=I Q (i) is an invariant at d.
For the case where d is the initial control location, Vin__l Q(Vl) v I, where I is
~-he initial predicate, is an invariant at d. The correctness of this observation is
guaranteed by the following lemma.

L e m m a 8. Consider a transition system S and a predicate P that is an invariant
orS. Let d E DC be a control location o r s with L(d) = { t l , . . ",tin} and di =
sour(ti). Let also Q I , . . . , Q m be predicates such that P A pc = d i implies Qi,
with i = 1 , . . . , m . If d is not the initial control location of S, then the predicate

m P A (l = d ~ Vi=l post[--+~,](Qi)) is an invariant of S, otherwise P A (l = d
(Vi~=l post[~,,](Qi) V I)) is an invariant orS.

Note that in case that transition t does not affect Q, we have post[--*t](Q) ~ Q,
and therefore, the correctness of our technique is implied by the lemma above
and the fact that if P ' is an invariant of S and pr implies Q/, then Q' is also an
invariant of So

The implementation of this technique is a function, denoted propg, that takes
as input a transition system S and a predicate P of the form AdEDC pc ---- d
Qd(V~). Then, computes for each control location d, the set of variables affected
by any transition in L(d). Let Va denote the intersection of this set with V~. As
result, this function yields, for each control location d, as a local invariant at d
the predicate Qd(V~) A 3Yd. V ~4d ~, d') �9

a'eL(a)
Propagation with cycles Consider now the situation described in Figure 4. An
application of the simple propagation technique does not allow to strengthen the
predicate m A~=I pc = di ~ x = i. For, we would add as a conjunct the predicate
pc = d ~ true v V m i-1 x = i, which is equivalent to true. Yet, it is clear that
Vim=l x = i is an invariant at d. We develop the next technique which captures
similar situations.

?'/2

" ~ ~ y := e

x 1 (~ y :=e l

Fig. 4. Propagation with cycles

Consider a control location d and a set a of control locations which is guarded
by d. Let {d l , . . . , d ,~} = sour(L(d)) \ a. Then, if for each i = 1 , . . . , m , Q,(Vi)

r ~ is an invariant of S at di and if d is safe w.r.t. ~Ji=l Vi and a, we can conclude
by Lemma 7 and Lemma 8 that Vi~l Qi(Vi) is an invariant at each d' E a.

Mixing generalized reaffirmed invariance and propagation Until now we consid-
ered propagation and reaffirmed invariance separately. Whereas propagation as-
sumes a given invariant P and propagates local invariants from control locations

331

to others, reaffirmed invariance does not assume such a predicate. We now present
a technique that combines propagation and reaffirmed invariance.

Consider a transition system S and an invariant P of S. Let d be a control
location of S such that { t l , . . . t ,~} = n(d) and d~ = sour(ti), for i = 1 , . . . , m .
Suppose that for each i = 1 , . . . , m, P A pc = di implies Q~(VI). If, for each
transition ti and each j with dj = sour(ti), Q~(Vi) implies e(Vl)~ = Ci and
Zi N Vj = 0, where Zi' = e(Ui) is aff(ti) and (3 is a list of constants, then we
can conclude that Vi~=I(Q~(Vi)A Zl = Ci) is invariant at d. Correctness of this
observation is again a consequence of Lemma 8 and Lemma 8.

Refined Strengthening Suppose we are given a proposed invariant P for transition
system S with transitions T. Suppose also that the proof of P ~ pF~[--*t](P)
fails for t l , . . . , t , ~ . The method of strengthening invariants (e.g. [15]) proposes
to try as next invariant P1 = P A/~=1 ~F~[--+tj(P). Thus, one has to try to
prove for each transition t the implication P A Q ::~ p~-e[--*t](P A Q), where
Q = A~=I ~-Fe[--*t,](P). The main drawback of this method is that, in general,
each strengthening step increases the size of the considered invariant which in
some cases leads to unreadable predicates.

We propose a variant of this method that is theoretically equivalent, i.e. it
leads to logically equivalent verification conditions, but which allows to reduce
the number of applications of ~-~ and to save redoing proofs.

Suppose that the at tempt of proving Vt E T . (P ~ P-r-~[---*t](P)) fails for the
transitions t l , . . . , tin, and that one gets subgoals Q1," �9 ", Qm, which are logically
equivalent to P ~ P~-~[--~t,](P), i = 1 , . . . , m. We propose to take in the next step
the predicate P~ = P AAim__t Qi instead of P1. The next lemma implies soundness
of our method but also proves that if P1 is inductive, then also P~.

L e m m a 9. Let P1 = PAA~=I pTe[--~j(P), Qi be equivalent to P ==> pr-e[--+t,](P),
and let P~ = P A Ai~=~ Qi. Then, "P1 and P~ ace equivalent.

It is worth to note that soundness of our method does not depend on the fact
that Q~ is equivalent to P ~ ~-~[-, , ,](P) but it suffices, if it is stronger.

To see that our method indeed avoids the blow-up of the considered pred-
icates which is due to the repeated application of the predicate transformer
pr~-~, let us look at the predicates to be considered at step i when each of the
strengthening and refined strengthening methods are applied in turn. In case
of the strengthening method one has to consider at step i the predicate Pi =
P0 A pFe(P0) A...pr~--~'(Pi_l) and to prove P~ ==~ P-~(Pi). In case of the refined
strengthening method, however, one has to consider the predicate Oi which is
obtained as a subgoal in step i, and then, to prove Q0 A . . . A Qi ~ ~-e(Qi).
Thus, in the refined strengthening method, at each step ~F~ has to be applied
only once. Another advantage of this method is that Q~ is usually of the form
pc = d =~ Q which can be explained by the fact that Qi is the predicate that is
obtained when the proof of Q0 A. . .A Qi-1 ~ p-r-e(Qi-1) for some fixed transition
with pc -= d as part of the enabling condition has been attempted. Now, when a
predicate Q of the form pc = d ==~ Q' is considered in order to prove that Q is
preserved by all transitions, it suffices to consider only those in L(d).

332

Combining Invariants Consider a network S = St II "'" II S,, of transition sys-
tems. Given a predicate P, in order to prove that P is an invariant of S, one can
calculate the product S1 (~ . . �9 ~ Sn and then prove that P is an invariant of the
resulting sequential transition system. This method is, however, not applicable
for large transition systems because of the big size of the obtained system. In-
deed, the resulting transition system mainly codes all possible interleaving of the
transition steps in the network S. In this section, we present techniques we use to
prove invariance properties of networks without calculating the product. These
techniques have been successfully applied to many mutual exclusion algorithms,
e.g. the Bakery mutual exclusion algorithm [12, 15] in three different versions and
Szymanski's mutual exclusion algorithm I18, 19] both parameterized and for two
processes.

Def in i t i on l0 . Given a transition system S, a predicate P is called history-
independent assertion at d E D e , if post[t](true) C ~P] holds for each t E L(d),
and moreover, if d is the initial control location of S, then Ini t implies P.

An history-independent assertion at d is true whenever computation reaches d
independently on how this happens, in particular it does not dependent on the
state in which the transition is taken.

Consider transition systems S1 and $2 with Si = (Xi, pci : DCI, Ti, Ii A pci =
di,0), for i = 1, 2. Moreover, consider predicates Qi, for i = 1, 2, and (dr, d2) G
DC1 • DC2. Assume we know that Qi is an history-independent assertion at di.
Then, we can conclude that QI v Q2 is an invariant of S1 I] $2 at (dr, d2). This
leads to the following heuristic formulated in the next lemma.

L e m m a 11. Let Si = (Xi,pci : DCi, Ti, Ii Apci = di,o), for i = I, 2, be transition
systems and let Qi be predicates. Then, for each (dr, d2) E DCt • DC2 such that
Qi is an hisfory-independent assertion of St at di, for i = 1,2, the predicate
Qt vQ2 is an invariant of $1]] $2 at (dl,d2).

If the predicates Qt and Q2 constraint only variables which are affected only
in St, respectively, $2, then we can even conclude that the stronger predicate
Qt A Q2 is an invariant at (dr, d2).

The implementation of both observations above is realized by a single function
comp which takes as arguments the transition systems 5'1 andS2 as well as
two predicates P1 and P2 for St and $2, respectively, which are of the form

A pc = dj =~ P~(dj), i = 1~ 2. The result of the application of this function
djEDC~
is a predicate of the form]~ pc = d ~ Q(d), where DC = DCt • DC2 and for

dEDC
d = (dl, d2), Q(d) is defined in Figure 3.

Remark. It is worth to note that each invariant Q obtained by applying the
function aff- indep is history-independent.

In a concrete implementation, the predicate obtained by an application of the
function comp, can be encoded byadding to each local invariant Pi(di) at di .two
bits. The first one encodes whether Pi(di) is history-independent and the second
whether it refers to a variable affected in Sj with j # i.

333

[P~(dl) v P2(d2) ; if for i -- 1, 2, Pi is an history-independent assertion atdi
and one of the predicates P1 or P2 refers to a variable
affected in $2 respectively $1

and predicate P1 respec. Pe does not refer to any variable
affected in $2 respee. $1

; otherwise

Fig. 5. Definition of eomp

The next lemma shows how given d~ E DCi and a predicate Q that is history-
independent at d~, we can deduce a predicate QI which is also history-independent
at d~ and which does not refer to variables affected in Sj with j ~ i.

L e m m a 1 2 . Let $1 and $2 be transition systems and let dl E DC1 (resp. d2 E
De2) be a control location of $1 (resp. $2). I f Q is a history-independent assertion
at d and Y are the variables occurring in Q which are affected in $2 (resp, $1),
then 3 Y �9 Q is a history-independent assertion at d.

Clearly, the predicate 3Y : D �9 Q does not refer to variables affected in Sj. Let
abs t be a function that takes as arguments two transition systems $1 and $2 and
a predicate P for $1, and returns a predicate Q for $1 such that Q is obtained
from P by applying the observation above.

Next we present the tactic we apply to synthesize an invariant from a given
network $1 II $2. This is presented by an algorithm written in pseudo-code and
which uses the heuristics presented above.

Input: $1 [[$2
Output: An invariant

1. Pi := aff-indep(Si); for i = 1,2
2. P := comp(S1, $2, P1, P2)
3. Q1 :=abst(S1,S~,P1), Q2 :=abst(S2,S1,P2)
4. Qi := Qi A propg(Si, Qi), for i = 1,2
5. return P A Q1 A Q2

4 E x a m p l e

The example we consider is the Bakery mutual exclusion algorithm [12, 15]. Two
processes are competing to enter their respective critical sections represented by
location 4. Thus, the invariant we are going to prove is given by the predicate
I N V = -~(pcl = 4 A pc2 = 4).

It can easily be checked that this invariant is not inductive. Moreover, cal-
culating the set of reachable states using the post operator does not terminate
(no fix-point can be reached in a finite number of steps). Calculating the weak-
est invariance property that is contained in I N V does terminate after 8 steps
(cf. [14]). We can automatically generate by our techniques an invariant that is
inductive and that allows to prove that I N V is indeed an invariant.

334

Transition system S~
pcl = l - - ~ pc~ = 2

pcl = 2 ~ y~ = y~ + l , pc~ = 3

pc~ -~ 3 A (y2 = O V yl ~ Y2) --~ PC~ = 4

pcl = 4 ~ pc~ = 5

pc1 = 5 - - -* y~ =-- O, pc~ = 1

Transition system $2
pc2 = 1 ---* pc~ = 2

pc2 = 2 ~ y~ = yl + l , pc~ = 3

pc2 = - 3 A (y ~ = O V y 2 < Y l) - - * P C ~ - - - - 4

pc2 -~- 4 ~ pc~ : 5

pc2 = 5 ~ y~ -= O, pc~ = 1

I n i t = (Yl = Y2 = 0 A p c l = p c 2 = 1)

Applying generalized reaffirmed invariance without cycles for $1 (resp. $2) yields
the predicate P1 (resp. P~) with:
P1 = (pc1 = 1 ~ yl = 0 v yl = 0 A y~ = 0) ^ (pc1 = 3 m yl = y2 + 1) A

(pcl = 4 ~ Y2 = 0 V Yl ~_ Y2)
P2 = (p c 2 = 1 =~ Y2 = 0 V y~ = 0 A Y2 = O) A (p c 2 = 3 =~ Y2 = Yl + 1)A

(pc2 = 4 ~ yl = 0 V y2 < yl)

Combining the predicates P1 and P2 according to function comp results in a
predicate equivalent to

P = (p c = (1 , 1) = ~ y l - - O V y 2 = O) A(pc=(1,3): :~yl = 0 V y ~ - - Y l + I) A
(p~ = (1,4) -~ yl = 0 v y~ < y l) ^ (pc(3,1) ~ yl = y2 + 1 v y2 = 0) A
(pc = (3, 3) ~ yl = y2 + 1 v y2 = y~ + 1) A (pc = (3, 4) ~ y~ = 0 v y~ < y l) ^
(pc = (4,1) ~ y~ = 0 v y~ <_ y2) ^ (p~ = (< 3) ~ y~ = 0 v y2 < y~)

In the sequel, we write p c l = d l A p c ~ = d~ for pc = (dl, d2).
Next, we apply the abstraction function abs t on .P1 and P2 to obtain:

Then, we apply our propagation technique without cycles. It can easily be
checked that we can propagate from control location 1 to 2, from 3 to 4, and
from 4 to 5, which yields the following predicates:
Q~ = (pc~ = l V pcz = 2 ~ y~ = 0) A (pc~ = 3 V pc~ = 4 V pCl = 5 ~ yz > 1)
Q~ = (pc2 = l V pc~ = l =~z y~ = O) A (pc~ = 3 V p c 2 = 4 V pe~ = 5 =~ y~ >_ 1)

Then, we can show P A Q~ A Q~ A I g Y ~ pr~-~[-*~.](INV), for each transition
t o f S~ I I s ~ .

5 D i s c u s s i o n a n d F u t u r e W o r k

This paper provides a set of techniques for the automatic generation of auxiliary
predicates to prove invariants of programs. The use of these heuristics for the ver-
ification of various mutual exclusion algorithms shows that they are promising.
They have been applied to different versions of the Bakery, Dekker, Peterson, and
Szymanski algorithms (see [15] for a recent presentation of many of these algo:
rithms and for references). Concerning Szymanski's mutual exclusion algorithm,
we verified the parameterized as well as the unparameterized case. We intend to
combine our techniques with others as abstract interpretation [5] to discover re-
lationships between program variables that can be used to derive invariants and
to investigate heuristics arid strategies for the decomposition of large programs.
Acknowledgemen t s We thank J. Sifakis who continuously encouraged and sup-
ported this work. Many interesting discussions with S. Graf and A. Pnueli helped
clarifying and fixing our ideas. We also thank the anonymous referees for jude-
cious comments.

335

References

1. K.R. Apt. Ten years of Hoare's logic : a survey, part I. ACM Trans. on Prog. Lang.
"and Sys, 3(2):431-483, 1981.

2. N. Bjcner, A. Browne~ and Z. Manna. Automatic generation of invariants and in-
termediate assertions. In U. Montanari, editor, 1st Int. Conf. on Principles and
Practice of Constraint Programming, 1995.

3. M. Caplain. Finding invariant assertions for proving programs. In Proc. Int. Conf.
on Reliable Software, Los Angeles, CA, 1975.

4. E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
POPL'83. ACM, 1983.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM
syrup, of Prog. Lang., pages 238-252. ACM Press, 1977.

6. E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation.
Comm. ACM, 18(8):453-457, 1975.

7. B. Elspas. The semiautomatic generation of inductive assertions for proving pro-
gram correctness. Research report, SRI, Menlo Park, CA, 1974.

8. R. W. Floyd. Assigning meanings to programs. In In. Proc. Syrup. on Appl. Math.
19, pages 19-32. American Mathematical Society, 1967.

9. S. M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE Trans.
On Software Engineering, 1:68-75, March 1975.

10. S. Graf and H. Saldi. Verifying inwriants using theorem proving. In In this volume,
1996.

11. S. Katz and Z. Manna. A heuristic approach to program verification. In Proc. 3rd
Int. Joint Conf. on Artificial Intelligence, Stanford,CA, 1976.

12. L. Lamport. A new solution of Dijkstra's concurrent programming problem.
Comm. ACM, 17(8):453-455, 1974.

13. O. Lichtenstein and A. Pnueh. Checking that finite state concurrent programs sat-
isfy their hnear specification. In.POPL, pages .97-107, 1985.

14. Z. Manna, A. Anuchitanukul, N. Bj0ner, A. Browne, E. Chang, M. Colon, L. De
Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP : The Stanford Temporal
Prover. Technical report, Stanford Univ., Stanford, CA, 1995.

15. Z. Manna and A. Pnueh. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

16. S. Owre, J. Rushby, N. Shankar, and F. yon Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 1995.

17. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Sym. on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337-351. Springer-Verlag, 1982.

18. B. K. Szymanski. A simple solution to Lamport's concurrent programming problem
verification. In Proc. Intern. Conj(on Supercomputing Sys., pages 621-626, 1988.

19. B. K. Szymanski and J. M. Vidal. Automatic verfication of a class of symmetric
parallel programs. In Proc. 13th IFIP World Computer Congress, 1994.

20. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In LICS'86. IEEE, 1986.

