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Abstract. We present XVERSA, a set of tools for the specification and analysis of resource-bound 
real-time systems. XVERSA facilitates the use of the Algebra of Communicating Shared Resources 
(ACSR), a real-time process algebra with explicit notions of resources and priority. A text based user 
interface supports syntax checking, analysis based on equivalence checking, state space exploration, 
and algebraic rewriting. A graphical user interface allows systems to be described and analyzed using 
intuitive pictorial representations of ACSR language elements. 

1 I n t r o d u c t i o n  

There has been significant progre~ in the development of formal methods for the design of real-time systems 
in an effort to increase safety and reliability. Formal approaches to the specification and analysis of real- 
time systems have taken many forms, including state machines, logics, and process algebras. We focus here 
on tools to support the algebraic paradigm. The algebra we use is the Algebra of Communicating Shared 
Resources (ACSR)[LBGG94]. 

ACSR is a timed process algebra thatfacilitates the description of concurrent real-time systems with seri- 
ally reusable resources. Most concurrent real-tlme process algebras adequately capture delays due to process 
synchronization, e.g., timed extensions of the classic untimed process algebras CSP and CCS[BB91, MT90, 
NS94]. However, these algebras abstract out resource-specific delays and priority arbitration mechanisms. In 
contrast, the computation model of ACSR is based on the view that the notions of resource and priority are 
central to real-time systems. The use of shared resources is modeled by timed actions whose executions are 
subject to the availability of resources. Contention for synchronization and resources is arbitrated according 
to the priorities of the competing actions. 

To facilitate the use of ACSR in the design and analysis of real-time systems we have created GCSR 
[BALC95], a graphical language that captures the semantics of ACSR in an intuitive pictorial representation, 
and XVERSA, a toolset that automates the analysis of ACSR and GCSR system models. 

The remainder of this paper is organized as follows. Section 2 introduces the ACSR and GCSR languages. 
Section 3 describes the XVERSA toolset. Section 4 presents some concluding remarks and information on 
how to obtain further information and an executable copy of the toolset. 

2 The ACSR and GCSR Formalisms 

ACSR is a timed process algebra based on the synchronization model of CCS that includes features for repre- 
senting synchronization, time, temporal seopes[LG85], resource requirements, and priorities. The semantics 
of ACSH has been developed for both dense time and discrete time models. However, the tools presented in 
this paper use the discrete time model exclusively. 

The semantics of an ACSR process is defined in terms of a prioritized labeled transition system. Edges are 
labeled with prioritized events of the form (e,p), or actions that represent sets of prioritized resources to be 
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consumed for one time unit, e.g., { ( r l , p l ) , . . ,  (rn,pn)}. Events model synchronization between concurrent 
process terms in a manner similar to that used in CCS. Actions represent resource allocation during the syn- 
chronous passage of one unit of discrete time. When several events and/or actions are offered simultaneously, 
a preemption relation determines which events or actio~as are allowed by pruning low priority edges. 

ACSR offers two basic notions of behavior equivalence that are defined over the prioritized labeled 
trausition system. The first equivalence relation is based on strong bisimulation, ~ r ,  which insures that 
eqni~,alem processes match one another's labeled transitions; it is a congruence relation. The second is based 
on weak bisimulation, ~ ,  which insures that equivalent processes match one another's non-v events but 
allows one process to make transitions on r that an equivalent process does not match. 

A sound and complete set of approximately 30 ~-preserving algebraic laws has been developed for 
ACSR. These laws can be used to derive proofs of properties of ACSR process expressions. 

The Graphical Communicating Shared Resources (GCSR) language addresses a shortcoming of ACSR 
(al~d process algebras in general): textual, mathematical notations often produce obtuse descriptions. GCSR 
was developed to support the modular, hierarchical, and thus scalable, specification of real-time systems. In 
GCSR. tl~e visibility scope of communication events, which reflect potential dependencies between system 
components, can be limited. Furthermore, GCSPJs notion of hierarchy is s~ruc~.ured in the sense that no edge 
can cross node boundaries and there is a graphical distinction between control transfer due to an interrupt 
versus an exception, i.e., involuntary versus voluntary release of control. These two syntactic features, in 
addition to the explicit representation of resources and priorities, distinguishes GCSR from other graphical 
languages for real-time systems, e.g., Statecharts[Har87], Modechart[JM94] and Communicating Real-time 
State M achines[Sha92]. 

The GCSR and ACSR languages are wetl integrated as there is a sound translation both from GCSR 
de.~criptions to ACSR processes and vice versa[BA96]. Thus, the theory of ACSR (including its semantic 
model, notions of equivalence, and set of algebraic laws) is directly applicable to GCSR. For instance~ the 
algebraic laws of ACSR can be used to restructure a GCSR description to a graphically more succinct, 
e.g., fewer edges and nodes, yet, equivalent GCSR description: In addition, the sound integration between 
GCSR and ACSR makes it is possible to mix the graphical and textual notations; for example, to specify 
Ihe high-level view of a system graphically and then fill the details of components textually. 

3 T h e  X V E R S A  T o o l s e t  

We have implemented a toolset with a graphical user interface to facilitate the use of ACSR and GCSR for 
modeling and analysis of real-time systems. Figure 1 shows the overall structure of the XVERSA system. 
The user's view of the tool is provided by the GCSR GUI and an X-Windows interface. The analysis of 
ACSI~ specifications is carried out by the VERSA system[CLX95b] that is accessed through these interfaces. 

The user interfaces are responsible for management of input/output streams. They allow processes to be 
,'ntered as graphical GCSR process descriptions or as ACSR processes using a text-based notation. Graphical 
input of GCSR specifications is managed with drawing support functions, syntax-checking functions, and 
automated translation from GCSR to ACSR. The text-based notation accepted by the X-Windows interface 
~.nhances the ACSR process algebra with the facility to define macros (e.g., to define manifest constants) 
and indexing which can be used to emulate value-passing. 

Within VERSA there are four major functional areas for analyzing processes: term rewriting, state space 
exploration, equivalence testing, and interactive execution. 

GCSR GUI I X-Windows Interface 
GCSR-to-ACSR I 

Text-Based Interface 

. . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  

Term Slate Space Equivalence Interactive 
Testing Execution Rewriting Exploralion 

Fig. 1. The XVERSA Toolset 
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The rewrite system facilitates the rewriting of ACSR process expressions according to sound algebraic laws 
that preserve prioritized strong equivalence, a bisimulation relation that respects priority. At the direction 
of lhe user, the rewrite system applies pre-defined algebraic laws to one or more processes, producing a new 
process that may be bound to a new, or pre-existing process variable. In this way, algebraic proofs of the 
equivalence of process expressions may be developed. The tool aids this process by automatically determining 
and applying laws applicable to a highlighted ACSR term. 

State space exploration, equivalence testing and interactive execution operate on a labeled transition 
system (LT$) representation of the system being analyzed. The LTS for one or more processes is produced 
by an algorithm that expands the process to produce a labeled transition system representing all possible 
executions. The LTS construction algorithm Mso prunes edges made unreachable by the semantics of the 
prioritized transition system, in most cases reducing the size of the resulting LTS. 

State space exploration analysis can be used to determine key properties of a system's LTS. These include 
(l) number of states and transitions; (2) presence of deadlocked states; (3) states capable of Zeno behaviors 
(i. e., infinite sequences of instantaneous events); (4) states that require synchronization to take place before 
time can progress; and (5) reachability of specific externally observable events. 

Process equivalence can be tested using a number of different notions of equivalence including syntactic 
equivalence, a weaker syntactic equivalence which allows renaming of process variables and simple changes in 
structure, prioritize d strong equivalence, and prioritized weak equivalence. In the order listed, these notions 
of equivalence increase in computational complexity and decrease in "strength" (i.e., equate more terms). 

The interactive execution feature allows user-dlrected execution of process specifications. The user may 
interactively step through the LTS one action at a time, produce traces from random executions of the LTS, 
save process configurations to a stack for later analysis while an Mterna~e path is explored, and analyze the 
size and deadlock characteristics of the LTS resulting from their process. 

The XVERSA toolset has been used successfully to model and analyze railroad crossing systems[LBAC96], 
airport t.axiways[BALC95], real-time schedulability analysis problems[CLX95a], the Philips audio control 
protocol[BPV94], the production cell case study[LL95, BA96], and to verify the correctness of a Sunshine 
ATM switching network[CL95]. 

4 Sumnaary  

We have presented XVERSA, a toolset that supports the formal analysis of resource-bound real-time sys- 
tems. XVEtLSA offers a graphical process description language and X-Windows based tools ~.hat automate 
time consuming and error-prone anMysis tasks. Our research into the theory of ACSR/GCSR and support- 
ilag tools is ongoing. Current goals include (1) the enhancement of ACSR/GCSR with vMue-passing; (2) 
the development of a refinement theory for ACSFt/GCSR processes; and (3) implementation of alternative 
senaantic representations. 

Further information on ACSR and GCSR is available on the World Wide Web at 

ht~;p : / /~v~.  c i s .  "apem~. edu/'r~;g/home, html. 

The XVERSA tools and descriptions of several case studies using XVER.SA are available from 

h~p ://~w~. ci$. upenn, edu/" lee/duncan/versa, html. 

Quest.ions about downloading and installing the tools should be addressed to ve r sa~$au l ,  ci$.upe~--l, edu. 
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