
X V E R S A : A n Integrated Graphical and T e x t u a l Too l se t for the
Spec i f i ca t ion and Analys i s o f R e s o u r c e - B o u n d R e a l - T i m e

S y s t e m s *

Duncan Clarke, Han~ne Ben-Abdallah, Insup Lee and Hong-liemg Xie
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

{ dclarke,hanene,lee,hxie)@saul.cis.upenn .edu

Oleg Sokolsky
Computer Command and Control Company

Philadelphia, PA 19104
sokolsky@cccc.eom

Abstract. We present XVERSA, a set of tools for the specification and analysis of resource-bound
real-time systems. XVERSA facilitates the use of the Algebra of Communicating Shared Resources
(ACSR), a real-time process algebra with explicit notions of resources and priority. A text based user
interface supports syntax checking, analysis based on equivalence checking, state space exploration,
and algebraic rewriting. A graphical user interface allows systems to be described and analyzed using
intuitive pictorial representations of ACSR language elements.

1 I n t r o d u c t i o n

There has been significant progre~ in the development of formal methods for the design of real-time systems
in an effort to increase safety and reliability. Formal approaches to the specification and analysis of real-
time systems have taken many forms, including state machines, logics, and process algebras. We focus here
on tools to support the algebraic paradigm. The algebra we use is the Algebra of Communicating Shared
Resources (ACSR)[LBGG94].

ACSR is a timed process algebra thatfacilitates the description of concurrent real-time systems with seri-
ally reusable resources. Most concurrent real-tlme process algebras adequately capture delays due to process
synchronization, e.g., timed extensions of the classic untimed process algebras CSP and CCS[BB91, MT90,
NS94]. However, these algebras abstract out resource-specific delays and priority arbitration mechanisms. In
contrast, the computation model of ACSR is based on the view that the notions of resource and priority are
central to real-time systems. The use of shared resources is modeled by timed actions whose executions are
subject to the availability of resources. Contention for synchronization and resources is arbitrated according
to the priorities of the competing actions.

To facilitate the use of ACSR in the design and analysis of real-time systems we have created GCSR
[BALC95], a graphical language that captures the semantics of ACSR in an intuitive pictorial representation,
and XVERSA, a toolset that automates the analysis of ACSR and GCSR system models.

The remainder of this paper is organized as follows. Section 2 introduces the ACSR and GCSR languages.
Section 3 describes the XVERSA toolset. Section 4 presents some concluding remarks and information on
how to obtain further information and an executable copy of the toolset.

2 The ACSR and GCSR Formalisms

ACSR is a timed process algebra based on the synchronization model of CCS that includes features for repre-
senting synchronization, time, temporal seopes[LG85], resource requirements, and priorities. The semantics
of ACSH has been developed for both dense time and discrete time models. However, the tools presented in
this paper use the discrete time model exclusively.

The semantics of an ACSR process is defined in terms of a prioritized labeled transition system. Edges are
labeled with prioritized events of the form (e,p), or actions that represent sets of prioritized resources to be

T This research was supported in part by NSF CCR-9415346, AFOSR F49620-95~1-0508, and ARO DAAH04-95-1-
0092.

403

consumed for one time unit, e.g., { (r l , p l) , . . , (rn,pn)}. Events model synchronization between concurrent
process terms in a manner similar to that used in CCS. Actions represent resource allocation during the syn-
chronous passage of one unit of discrete time. When several events and/or actions are offered simultaneously,
a preemption relation determines which events or actio~as are allowed by pruning low priority edges.

ACSR offers two basic notions of behavior equivalence that are defined over the prioritized labeled
trausition system. The first equivalence relation is based on strong bisimulation, ~ r , which insures that
eqni~,alem processes match one another's labeled transitions; it is a congruence relation. The second is based
on weak bisimulation, ~ , which insures that equivalent processes match one another's non-v events but
allows one process to make transitions on r that an equivalent process does not match.

A sound and complete set of approximately 30 ~-preserving algebraic laws has been developed for
ACSR. These laws can be used to derive proofs of properties of ACSR process expressions.

The Graphical Communicating Shared Resources (GCSR) language addresses a shortcoming of ACSR
(al~d process algebras in general): textual, mathematical notations often produce obtuse descriptions. GCSR
was developed to support the modular, hierarchical, and thus scalable, specification of real-time systems. In
GCSR. tl~e visibility scope of communication events, which reflect potential dependencies between system
components, can be limited. Furthermore, GCSPJs notion of hierarchy is s~ruc~.ured in the sense that no edge
can cross node boundaries and there is a graphical distinction between control transfer due to an interrupt
versus an exception, i.e., involuntary versus voluntary release of control. These two syntactic features, in
addition to the explicit representation of resources and priorities, distinguishes GCSR from other graphical
languages for real-time systems, e.g., Statecharts[Har87], Modechart[JM94] and Communicating Real-time
State M achines[Sha92].

The GCSR and ACSR languages are wetl integrated as there is a sound translation both from GCSR
de.~criptions to ACSR processes and vice versa[BA96]. Thus, the theory of ACSR (including its semantic
model, notions of equivalence, and set of algebraic laws) is directly applicable to GCSR. For instance~ the
algebraic laws of ACSR can be used to restructure a GCSR description to a graphically more succinct,
e.g., fewer edges and nodes, yet, equivalent GCSR description: In addition, the sound integration between
GCSR and ACSR makes it is possible to mix the graphical and textual notations; for example, to specify
Ihe high-level view of a system graphically and then fill the details of components textually.

3 T h e X V E R S A T o o l s e t

We have implemented a toolset with a graphical user interface to facilitate the use of ACSR and GCSR for
modeling and analysis of real-time systems. Figure 1 shows the overall structure of the XVERSA system.
The user's view of the tool is provided by the GCSR GUI and an X-Windows interface. The analysis of
ACSI~ specifications is carried out by the VERSA system[CLX95b] that is accessed through these interfaces.

The user interfaces are responsible for management of input/output streams. They allow processes to be
,'ntered as graphical GCSR process descriptions or as ACSR processes using a text-based notation. Graphical
input of GCSR specifications is managed with drawing support functions, syntax-checking functions, and
automated translation from GCSR to ACSR. The text-based notation accepted by the X-Windows interface
~.nhances the ACSR process algebra with the facility to define macros (e.g., to define manifest constants)
and indexing which can be used to emulate value-passing.

Within VERSA there are four major functional areas for analyzing processes: term rewriting, state space
exploration, equivalence testing, and interactive execution.

GCSR GUI I X-Windows Interface
GCSR-to-ACSR I

Text-Based Interface

. r r r

Term Slate Space Equivalence Interactive
Testing Execution Rewriting Exploralion

Fig. 1. The XVERSA Toolset

404

The rewrite system facilitates the rewriting of ACSR process expressions according to sound algebraic laws
that preserve prioritized strong equivalence, a bisimulation relation that respects priority. At the direction
of lhe user, the rewrite system applies pre-defined algebraic laws to one or more processes, producing a new
process that may be bound to a new, or pre-existing process variable. In this way, algebraic proofs of the
equivalence of process expressions may be developed. The tool aids this process by automatically determining
and applying laws applicable to a highlighted ACSR term.

State space exploration, equivalence testing and interactive execution operate on a labeled transition
system (LT$) representation of the system being analyzed. The LTS for one or more processes is produced
by an algorithm that expands the process to produce a labeled transition system representing all possible
executions. The LTS construction algorithm Mso prunes edges made unreachable by the semantics of the
prioritized transition system, in most cases reducing the size of the resulting LTS.

State space exploration analysis can be used to determine key properties of a system's LTS. These include
(l) number of states and transitions; (2) presence of deadlocked states; (3) states capable of Zeno behaviors
(i. e., infinite sequences of instantaneous events); (4) states that require synchronization to take place before
time can progress; and (5) reachability of specific externally observable events.

Process equivalence can be tested using a number of different notions of equivalence including syntactic
equivalence, a weaker syntactic equivalence which allows renaming of process variables and simple changes in
structure, prioritize d strong equivalence, and prioritized weak equivalence. In the order listed, these notions
of equivalence increase in computational complexity and decrease in "strength" (i.e., equate more terms).

The interactive execution feature allows user-dlrected execution of process specifications. The user may
interactively step through the LTS one action at a time, produce traces from random executions of the LTS,
save process configurations to a stack for later analysis while an Mterna~e path is explored, and analyze the
size and deadlock characteristics of the LTS resulting from their process.

The XVERSA toolset has been used successfully to model and analyze railroad crossing systems[LBAC96],
airport t.axiways[BALC95], real-time schedulability analysis problems[CLX95a], the Philips audio control
protocol[BPV94], the production cell case study[LL95, BA96], and to verify the correctness of a Sunshine
ATM switching network[CL95].

4 Sumnaary

We have presented XVERSA, a toolset that supports the formal analysis of resource-bound real-time sys-
tems. XVEtLSA offers a graphical process description language and X-Windows based tools ~.hat automate
time consuming and error-prone anMysis tasks. Our research into the theory of ACSR/GCSR and support-
ilag tools is ongoing. Current goals include (1) the enhancement of ACSR/GCSR with vMue-passing; (2)
the development of a refinement theory for ACSFt/GCSR processes; and (3) implementation of alternative
senaantic representations.

Further information on ACSR and GCSR is available on the World Wide Web at

ht~;p : / /~v~. c i s . "apem~. edu/'r~;g/home, html.

The XVERSA tools and descriptions of several case studies using XVER.SA are available from

h~p ://~w~. ci$. upenn, edu/" lee/duncan/versa, html.

Quest.ions about downloading and installing the tools should be addressed to ve r sa~$au l , ci$.upe~--l, edu.

References

[BA96] Han6ne Ben-Abdallah. Graphical Communicating Shared Resources: A Language]or the Specification,
Refinement, and Analysis o] Real. Time Systems. PhD thesis, Depaxtment of Computer and Information
Science, University of Pennsylvania, 1996.

[BALC95] Han~ne Ben-Abdanah, Insup Lee, and Jin-Youg Choi. A graphical language with formal semantics for the
specification and analysis of real-time systems. In Proc. of IEEE Real-Time Systems Symposium, Pisa,
Italy, December 1995.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Formal Aspects o~ Computing, 3(2):142-
188, 1991.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio Control Protocol. In H. Lemgmnack,
W.-P. de Roever, and J. Vytopil, editors, FTRTFT '9~: Formal Techniques in Real-time and Fault-tolerant
Systems, pages 170-192. LNCS 863, Springer-Verlag, 1994.

405

[(%95]

[cLx%a]

[CLX95b]

[Har871

[LBAC961

[LBGG94]

[LG85]

[LL95]

[MT90]

[ShagS]

Duncan Clarke and Insup Lee. A hybrid approach to formal verification applied to an ATM switching
system. Technical report, Dept. of CIS, Univ. of Pennsylvania, Dec 1995.
J-Y. Choi, L Lee, and H-L Xie. The Specification and Schedulaliility Analysis of Real-Time Systems using
ACSR. In Proe. o] IEEE Real-Time Systems Symposium, December 1995.
D. Clarke, I. Lee, and H. Xie. VERSA: A tool for the sp~zlfication and analysis of resource-bound real-time
systems. Journal of Computer and Software Engineering, 3(2), April 1995.
D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231-274, June 1987.
F. Jahanian and A.K. Mok. Modeehart: A specification language for real-time systems. IEEE Transactions
on Software Engineering, 20(12):933-947, December 1994.
Insup Lee, Han~ne Ben-Abdallah, and Jin-Young Choi. A process algebraic method for the specification
and analysis of real-time systems. In Constance tIeitmeyer and Dino Mandrioli, editors, Formal Methods
for Real-Time Computing, chapter 7. Joh~ Wiley & Sons, Chichester, January 1996.
I. Lee, P. Br~mond-Gr~goire, and R. Gerber. A Process Algebraic Approach to the Specification and

Analysis of Resource-Bound Real-Time Systems. Proceedings of the IEEE, 82(1):158-171, January 1994.
I. Lee and V. Gehlot. Language Constructs for Distributed Real-Time Programming. In Proc. IEEE
Real. Time Systems Symposium, 1985.
Claus Lewerentz and Thomas Linder, editors. Formal Development of Reactive Systems: Case Study
Production Cell, volume 891 of Lecture Notes in Computer Science. Springer-Verlag, 1995.
F. Moiler and C. Toffs. A Temporal Calculus of Communicating Systems. In Proc. o.f CONCUR '90,
pages 401-415. LNCS 458, Springer Verlag, August 1990.
X. Nicollin and J. Sifakis. The Algebra of Timed Processes ATP: Theory and Application. Information
and Computation, 114(1):131-178~ October 1994.
A. Shaw. Communicating Real-time State Machines. IEEE Transactions on Software Engineering,
September 1992.

