Skip to main content

(poly(log log n), poly(log log n))—Restricted verifiers are unlikely to exist for languages in \(\mathcal{N}\mathcal{P}\)*

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1996 (MFCS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1113))

Abstract

The aim of this paper is to present a proof of the equivalence of the equalities \(\mathcal{N}\mathcal{P} = \mathcal{P}\mathcal{C}\mathcal{P}\)(log log n,1) and \(\mathcal{P} = \mathcal{N}\mathcal{P}\). The proof is based on producing long pseudo-random bit strings through random walks on expander graphs. This technique also implies that for any language in \(\mathcal{N}\mathcal{P}\) there exists a restricted verifier using log n + c, c is a constant, random bits. Furthermore, we prove that the equality of classes \(\mathcal{N}\mathcal{P}\) and \(\mathcal{P}\mathcal{C}\mathcal{P}\) (poly(log log n), poly(log log n)) implies the inclusion of \(\mathcal{N}\mathcal{P}\) in \(\mathcal{D}\mathcal{T}\mathcal{I}\mathcal{M}\mathcal{E}\)(n poly(log log n)). Also, some technical details of the proof of \(\mathcal{N}\mathcal{P} = \mathcal{P}\mathcal{C}\mathcal{P}\) (log n, 1) are used for showing that a certain class of (poly(log log n), poly(log log n))-restricted verifiers does not exist for languages in \(\mathcal{N}\mathcal{P}\) unless \(\mathcal{P} = \mathcal{N}\mathcal{P}\).

This work was supported by the Information Technology Programme of EU under the project ALCOM-IT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in logspace. Proc. of the 19th ACM Symposium on Theory of Computing, pp. 132–140, 1987.

    Google Scholar 

  2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. Proc. of the 33th Annual IEEE Symposium on Foundations of Computer Science, pp. 14–23, 1992.

    Google Scholar 

  3. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of \(\mathcal{N}\mathcal{P}\). Proc. of the 33th Annual IEEE Symposium on Foundations of Computer Science, pp. 2–13, 1992.

    Google Scholar 

  4. L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic Time. Proc. of the 23th A CM Symposium on Theory of Computing, pp. 21–31, 1991.

    Google Scholar 

  5. S.A. Cook. The complexity of theorem-proving procedures. Proc. of the 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1971.

    Google Scholar 

  6. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost \(\mathcal{N}\mathcal{P}\)-complete. Proc. of the 32th Annual IEEE Symposium on Foundations of Computer Science, pp. 2–12, 1991.

    Google Scholar 

  7. O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer and System Sciences 22, pp. 407–420, 1981.

    Article  Google Scholar 

  8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of \(\mathcal{N}\mathcal{P}\)-Completeness. Freeman, San Francisco, 1979.

    Google Scholar 

  9. S. Hougardy, H.J. Proömel, and A. Steger. Probabilistically Checkable Proofs and their Consequenses for Approximation Algorithms. Discrete Mathematics 136, pp. 175–223, 1994.

    Article  Google Scholar 

  10. T. Impagliazzo and D. Zuckerman. How to recycle random bits. Proc. of the 30th Annual IEEE Symposium on Foundations of Computer Science, pp. 248–253, 1989.

    Google Scholar 

  11. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. Journal of the Assosiation for Computing Machinery 39 (4), pp. 859–868, 1992.

    Google Scholar 

  12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, 1995.

    Google Scholar 

  13. R. Rubinfeld and M. Sudan. Testing Polynomial Functions Efficiently and over Rational Domains. Proc. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 23–32, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wojciech Penczek Andrzej Szałas

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fotakis, D., Spirakis, P. (1996). (poly(log log n), poly(log log n))—Restricted verifiers are unlikely to exist for languages in \(\mathcal{N}\mathcal{P}\)*. In: Penczek, W., Szałas, A. (eds) Mathematical Foundations of Computer Science 1996. MFCS 1996. Lecture Notes in Computer Science, vol 1113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61550-4_162

Download citation

  • DOI: https://doi.org/10.1007/3-540-61550-4_162

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61550-7

  • Online ISBN: 978-3-540-70597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics