Skip to main content

On the conjugation of Standard morphisms

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1996 (MFCS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1113))

Abstract

Let A={a, b} be an alphabet. An infinite word on A is Sturmian if it contains exactly n+1 distinct factors of length n for every integer n. A morphism f on A is Sturmian if f(x) is Sturmian whenever x is. A morphism on A is Standard if it is an element of the monoid generated by the two elementary morphisms E, which exchanges a and b, and φ, the Fibonacci morphism defined by φ(a)=ab and φ(b)=a. The set of Standard morphisms is a proper subset of the set of Sturmian morphisms. In the present paper, we give a characterization of Sturmian morphisms as conjugates of Standard ones. Sturmian words generated by Standard morphisms are characteristic words. The previous result allows to prove that a morphism f generates an infinite word having the same set of factors as a characteristic word generated by a Standard morphism g if and only if f is a conjugate of g.

Partially supported by PRC ”Mathématiques et Informatique” and by ESPRIT BRA working group 6317 - ASMICS 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc.1 (1994), 133–143.

    Google Scholar 

  2. J.-P. Allouche, M. Mendès France, Quasicrystal Ising Chain and Automata Theory, J. Stat. Phys.42 (1986), 809–821.

    Google Scholar 

  3. J. Bernoulli III, Sur une nouvelle espèce de calcul, in Recueil pour les astronomes, vol. 1, Berlin (1772), 255–284.

    Google Scholar 

  4. J. Berstel, Mots de Fibonacci, in Séminaire d'Informatique Théorique, L.I.T.P. Universités Paris 6 et 7, Année 1980–81, 57–78.

    Google Scholar 

  5. J. Berstel, Recent results on Sturmian words, in Proceedings DLT'95 (J. Dassow Ed.), (1995), to appear.

    Google Scholar 

  6. J. Berstel, P. Séébold, A Characterization of Sturmian Morphisms, in MFCS'93 (A. Borzyskowski, S. Sokolowski eds.), Lect. Notes Comp. Sci. 711 (1993), 281–290.

    Google Scholar 

  7. J. Berstel, P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc.1 (1994), 175–189.

    Google Scholar 

  8. J. Berstel, P. Séébold, A Remark on Morphic Sturmian Words, Informatique théorique et applications28 (1994), 255–263.

    Google Scholar 

  9. E. Bombieri, J. E. Taylor, Which distributions of matter diffract ? An initial investigation, J. Phys.47 (1986), Colloque C3, 19–28.

    Google Scholar 

  10. J.-P. Borel, F. Laubie, Construction de mots de Christoffel, C. R. Acad. Sci. Paris313 (1991), 483–485.

    Google Scholar 

  11. J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, J. Théorie des Nombres de Bordeaux5 (1993), 23–51.

    Google Scholar 

  12. J. E. Bresenham, Algorithm for computer control of a digital plotter, IBM Systems J.4 (1965), 25–30.

    Google Scholar 

  13. T. C. Brown, A characterization of the quadratic irrationals, Canad. Math. Bull.34 (1991), 36–41.

    Google Scholar 

  14. T. C. Brown, Descriptions of the Characteristic Sequence of an Irrational, Canad. Math. Bull.36 (1993), 15–21.

    Google Scholar 

  15. E. Coven, G. Hedlund, Sequences with minimal block growth, Math. Systems Theory7 (1973), 138–153.

    Article  Google Scholar 

  16. D. Crisp, W. Moran, A. Pollington, P. Shiue, Substitution Invariant Cutting Sequences, J. Théorie des Nombres de Bordeaux5 (1993), 123–138.

    Google Scholar 

  17. X. Droubay, Palindromes in the Fibonacci word, Inform. Proc. Letters55 (1995), 217–221.

    Article  Google Scholar 

  18. S. Dulucq, D. Gouyou-Beauchamps, Sur les facteurs des suites de Sturm, Theoret. Comput. Sci.71 (1990), 381–400.

    Article  Google Scholar 

  19. G.A. Hedlund, Sturmian minimal sets, Amer. J. Math66 (1944), 605–620.

    Google Scholar 

  20. G.A. Hedlund, M. Morse, Symbolic dynamics II — Sturmian trajectories, Amer. J. Math62 (1940), 1–42.

    Google Scholar 

  21. S. Ito, S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math.16 (1990), 287–306.

    Google Scholar 

  22. F. Laubie, É. Laurier, Calcul de multiples de mots de Christoffel, C. R. Acad. Sci. Paris320 (1995), 765–768.

    Google Scholar 

  23. M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and Applications vol. 17, Addison-Wesley, Reading, Mass., 1983.

    Google Scholar 

  24. A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci.136 (1994), 361–385.

    Article  Google Scholar 

  25. W. F. Lunnon, P. A. B. Pleasants, Characterization of two-distance sequences, J. Australian Math. Soc.53 (1992), 198–218.

    Google Scholar 

  26. A. A. Markoff, Sur une question de Jean Bernoulli, Math. Ann.19 (1882), 27–36.

    Article  Google Scholar 

  27. F. Mignosi, Infinite words with linear subwords complexity, Theoret. Comput. Sci.65 (1989), 221–242.

    Article  Google Scholar 

  28. F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci.82 (1991), 71–84.

    Article  Google Scholar 

  29. F. Mignosi, P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux5 (1993), 221–233.

    Google Scholar 

  30. M. Queffélec, Substitution Dynamical Systems — Spectral Analysis Lecture Notes Math.,vol. 1294, Springer-Verlag, 1987.

    Google Scholar 

  31. G. Rauzy, Mots infinis en arithmétique, in:Automata on infinite words (D. Perrin ed.), Lect. Notes Comp. Sci. 192 (1985), 165–171.

    Google Scholar 

  32. P. Séébold, Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci.88 1991, 365–384.

    Article  Google Scholar 

  33. C. Series, The geometry of Markoff numbers, The Mathematical Intelligencer7 (1985), 20–29.

    Google Scholar 

  34. K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull.19 (1976), 473–482.

    Google Scholar 

  35. B. A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.

    Google Scholar 

  36. Z.-X. Wen, Z.-Y. Wen, Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris318 (1994), 299–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wojciech Penczek Andrzej Szałas

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Séébold, P. (1996). On the conjugation of Standard morphisms. In: Penczek, W., Szałas, A. (eds) Mathematical Foundations of Computer Science 1996. MFCS 1996. Lecture Notes in Computer Science, vol 1113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61550-4_174

Download citation

  • DOI: https://doi.org/10.1007/3-540-61550-4_174

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61550-7

  • Online ISBN: 978-3-540-70597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics