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Abstract .  Recently, Augmented Regular Expressions (AREs) have 
been proposed as a formalism to describe, recognize and learn a non- 
trivial class of context-sensitive languages (CSLs) [1, 2]. AREs augment 
the expressive power of Regular Expressions (REs) by including a 
set of constraints, that involve the number of instances in a string 
of the operands of the star operations of an RE. Although it is 
demonstrated that not all the CSLs can be described by AREs, the class 
of representable objects includes planar shapes with symmetries, which is 
important for pattern recognition tasks. Likewise, it is proved that AREs 
cover all the pattern languages [3]. An efficient algorithm is presented to 
recognize language strings by means of AREs. The method is spfitted in 
two stages: parsing the string by the underlying regular expression and 
checking that the resulting star instances satisfy the constraints. 

1 I n t r o d u c t i o n  

In order to extend the potential of application of the syntactic approach 
to pat tern recognition [4], the efficient use of models capable of describing 
context-sensitive structural relationships is needed, since most  objects cannot 
be represemed adequately by regular or context-free languages [5]. Moreover, 
learning such models from examples is interesting to au tomate  as much as 
possible the development of applications. Context-sensitive g rammars  [6] are 
not a good choice, since their parsing is computat ional ly  expensive and there is 
not any available algorithm to learn them automatically.  Augmented Transition 
Networks (ATNs) [7] are powerful models that  have been used in natural  
language processing, but which are very difficult to infer [8]. Pat tern  languages 
[3] provide a very limited mechanism to take into account some context influences 
(namely, the repetition of variable substrings along the strings of the language), 
and some algorithms have been proposed to infer them from examples and 
qu~eries [3, 9]. Nevertheless, the expressive power of pat tern  languages is clearly 
insufficient to cope with most of the context-sensitive structures (e.g. rectangles). 

On the other hand, it is known that  controlled (context-free) g rammars  
can generate some context-sensitive languages (CSLs) [6]. By using a recursive 



sequence of control sets on universal even-linear grammars, Takada has shown 
that a hierarchy of language families that  are properly contained in the class 
of CSLs can be learned using regular inference algorithms [10]. Furthermore, 
an efficient parsing procedure can be devised for each language in any of these 
families, which is based on parsing successively by a set of universal even-linear 
grammars [10]. However, the gap in expressive power between each of these 
language families and the class of CSLs seems to be rather large, and it is 
not clear what types of context relations can be described by the controlled 
grammars. 

Recently, Augmented Regular Expressions (AREs) have been proposed as a 
formalism to describe, recognize and learn a class of CSLs, that  covers planar 
shapes with symmetries [1]. AREs are neither the regular-like expressions [6], 
that are known to describe the family of CFLs, nor a type of regulated rewriting 
[6]. Roughly speaking, an ARE R is formed by a regular expression (RE) /~, in 
which the stars are replaced by natural-valued variables (called star variables), 
and these variables are related through a finite number of constraints (linear 
equations). Note that  REs are reduced to AREs with zero constraints among 
the star variables. A general method to learn AREs from examples is described 
elsewhere [2]. Here, we deal with the problem of recognizing a given string as 
belonging to the language described by an ARE, and we present an efficient 
method to solve it. 

2 A u g m e n t e d  R e g u l a r  E x p r e s s i o n s  ( A R E s )  

Let S = {al,. . . ,am} be an alphabet and let A denote the empty string. The 
regular expressions (REs) over S and the languages that  they describe are 
defined recursively as follows: 0 and A are REs that describe the empty set 
and the set {A}, respectively; for each ai C Z (1 < i < m), ai is a RE that 
describes the set {ai}; if P and Q are REs describing the languages Lp and 
LQ, respectively, then (P  + Q), (PQ) ,  and (P*) are REs that  describe the 
languages Lp U LQ, LpLQ and L~, respectively. By convention, the precedence 
of the operations in decreasing order is �9 (star), (concatenation), + (union). 
This precedence together with the associativity of the concatenation and union 
operations allows to omit many parentheses in writing an RE. The language 
described by an RE R is denoted L(R). Two REs P and Q are said to be 
equivalent, denoted by P = Q, if they describe the same language. REs and 
finite-state automata  (FSA) are alternative representations of the class of regular 
languages, and there are algorithms to find an RE equivalent to a given FSA 
and viceversa [11, 12]. 

Let R be a given RE including ns star symbols (us > 0). The set of 
star variables associated with R is an ordered set of natural-valued variables 
V = {vl, ...,v~8}, which are associated one-to-one with the star symbols that  
appear in R in a left-to-right scan. For vi, vj E V, we say that vi contains vj iff 
the operand of the star associated with vi in R includes the star corresponding to 
vj ; and we say vi directly-contains vj iff vi contains vj and there is no vk C V such 



tha t  vi contains vk and vk contains vj. The star tree 7- = (N, E, r) associated 
with R is a general tree in which the root  node r is a special symbol ,  the set 
of nodes is N = V U {r}, and the set of edges E is defined by the con ta inment  
relationships of  the star variables: (i) an edge (r, vl) is created for each vi E V 
tha t  is not  directly-contained by other  star variable; (ii) for all vi, vj C V, if vi 
directly-contains vj then an edge (vi, vj) is created (so vj is a son of vl). A simple 
a lgor i thm to build the star tree 7- has been reported [1], with a t ime complexi ty  
of  O(]R] �9 h(R)), where h(R) is the depth of  non-removable  parentheses in R. 

We say tha t  a star variable v E V is instantiated, during the parsing of  a 
string s by RE  R (from which V has been defined), each t ime the operand  of  
the corresponding star (an RE) is matched  zero or some number  of consecutive 
t imes against  a substr ing of  s. The number  of  repeated matches  (cycles) of the 
star operand in an instance of  v will be the value of  v for tha t  instance. Hence, 
star variables can only take natura l  numbers  as values. However, we will see 
that ,  for computa t iona l  purposes, it is useful to assign a special value, say - 1 ,  
to a star variable v, whenever v is not  ins tant ia ted during a cycle of  an instance 
of its father in 7-. In this way, all the star variables tha t  are brothers  in the star 
tree 7- will have the same structure of instances for a given string. Let us put  it 
more  formally. 

Let V be the set of  star variables associated with an RE R. Given a 
certain string s belonging to the language L(/~), a da ta  s t ructure  S I , ( V )  = 
{S/~(vl) ,  ...SI,(v,~,,)}, called the set of  star instances (of the star variables in V 
for s), can be built during the process of  parsing s by /~. Each member  of  the 
set 5'I~ (V) is a list of lists containing the instances of a par t icular  star variable: 

Vi E [1,ns] : SI . . (v i )= (l[ ... l~,~t,(i)) where nlists(i) >_ 0 

Vi E [1,ns] Vj E [1,nl is ts( i )] ' l j  = (e}l ... e}(~l~,,,(i,j))) where nelems( i , j )  >_ 1 

The star instances stored in SI , (V )  are organized according to the 
conta inment  relationships described by 7-. To this end, each list l} is associated 

with two pointers father_list(lj) and father_elem(l~) tha t  identify" the instance of 

the father star variable f rom which the instances of vi in l~- are derived. Fig.1 
shows an example of the star variable instances for a given string and RE,  for 
which the star tree 7- has four levels. 

In general, for all the star variables tha t  are in the first level of  7-, the 
following structure arises: 

Vvi, ( , ' , v d e T -  ~ SI~(vi)  = (l~) A l~ = (41)  A 
father_list(l~) = - 1  A fa ther_elem( l~)=-1  

i.e. nEsts(i) = 1 and nelems(i, 1) = 1; fur thermore,  if v~ is not ins tant ia ted 
in parsing s then e~l = - 1  else e~l > 0 is the number  of  matches  of the star 
operand in the only instance of vi. Otherwise, let v] be the father  of vi in 7-. 
For all the star variables tha t  are in the second or higher levels of  7-, we have 
the following general rule: 
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V = 
R(V/ . )  = 
7- = 
S 

SI , ( v~ )  = 
SI,(v~) = 
SI~(v3) = 
S L ( v l )  = 
S l , (v2)  = 
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(a(b(ce'c + dr ' d ) ' ) ' ) "  
{ v l ,  v2, v3, v4, v s }  
(a(b(ce~lc + df~2d)~3)~') ~ 
(y  u ~, {(~, v~), (v~, ~,), (~,, ~) ,  (~,  ~) ,  (v~, ~)},  ~) 
abccdffdcecbddbdfdceecabceeec 
((2) ~-~,-~t ) 
( (3 1)( ~,~ ) 
( (3 1 2) (~,~ (1) (~,~)  
( (0-1 1) ~ ,~  (-1) ~,~) (-1 2) (~,~ (3) (~,~)) 
((-1 2-1) (~,~ (0) ~ ,~  (1 -1)~ ~,~ (-1) (~,~) 

r 

( 3  ~1)- Star instances 

(0-1 1 ) ~ ~  

An example o] star instances data structure. 

. l i s t s ( i )  = # { ~ f k  I ~5~ > 0} A vj  e [1. n l i s t~(0]  : . e l e m ~ ( ~ , j )  = e~,k, A 

father_tist(lj ) = j '  A fath~r_dem(Zj ) = k' 

and e~. k is either a natural (the instance of vi in the k-th cycle of the instance 
of v] identified by the pointers {j',k'}) or - 1  (if v~ is not instantiated in such 
cycle). Two efficient algorithms for unambiguous 1 RE parsing that construct the 
star instances structure have been reported [1]. 

An Augmented Regular Expression (or ARE) is a four-tupla (R, V,T,/:), 
where R is a regular expression over an alphabet ~,  V is its associated set of 
star variables, 7- is its associated star tree, and L: is a set of independent linear 

1 An RE R is ambiguous if there exists a string s E L(R) for which more than one 
parse of s by R can be made. 



relations {ll, ..., Inc}, that  parti t ion the set V into two subsets V i~d, V &p of 
independent and dependent star variables, respectively; this is 

" a..yind a ind l i is V dep ---- ailV~l nd q- ..--}- za j + . .+  i(ni)Vni + aio , for 1 < i < nc 

where ni and ne are the number of independent and dependent star variables, 
respectively (and ns = nc + ni).  The equations in /2 are only well-defined for 
natural  values of the involved variables. Moreover, the coefficients aij of the 
linear relations will always be rational numbers. 

Let /~ = (R, V, T,  s  be an ARE over Z,  the language L(/~) represented by 
/~ is  defined as L(/~) = {c~ E Z* [ a E L ( R )  and there exists a parse of 
by _g in which the star instances S I ~ ( V )  satisfy s  The formal definition of 
the predicate s a t i s f y ( S I ~  (V) ,  f~) is stated in the next section, together with the 
description of the proposed method for string recognition. 

The AREs permit  to describe a class of context-sensitive languages by 
imposing a set of rules that  constrain the language of a regular super-set. 
A very simple example is the language of rectangles described by the ARE 
[{~ = ( R I , V 1 , Z I , s  with RI(V~/*)  = aa~lbb~aa'3bb TM and Z;1 = {v3 = Vl, 
v4 = v2}. However, quite more complex languages with an arbi trary level of 
star embedment  and multiple linear constraints can be described as well by the 
ARE formalism. Consider, for instance, the ARE /~2 = (R2, V2,2r2, z;u) with 
[ ~ 2 ( V 2 / * )  = (eV1(dV2bVa)V4cVSaVBcVr(bVsdVg)Vl~ via a n d  ~C2 = {Vl l  = Vl "+ 

v5--v7 ,  v12 = v6, v2 = v4--1, v3 = v4--1, v8 =0 .5v10+0.5 ,  v9 =0 .Svao+0 .5} .  
Fig.2 shows an example that  belong to L ( /~ ) ,  given an alphabet  of graphical 
primitives {T a , / z  b,---+ c, "x d, .[ e}. 

T h e o r e m  1. The Augmented  Regular Expressions does nol describe all the 
CSLs. 

Proof. A counterexample is the language L1 = {a k I k = 2 i A i >_ 1}, which 
is known to be context-sensitive [12]. L1 is not describable because AREs can 
only filter the range of values of the star variables through linear relations, and 
these relations only involve the star variables but not any external variable (such 
as i in L1). Hence, there is no ARE /~ = (/~, V , T , s  such that  s can represent 
the constraint vl = 2  i A i >  1 for R ( V / * ) = a  vl. [] 

The context-sensitive language {a k [ k is a prime } is another counterexam- 
pie. Indeed, it seems reasonable to expect that  a large class of CSLs will not b e  
described by AREs either, due to the limited type of context constraints that  
can be represented. 

Consider now the CSL L2 = { x x  ] x E (0 + 1) +} that  corresponds to the 
pat tern language xx over the binary alphabet  ~U = {0, 1}, where the variable 
x stands for any string in Z + [a]. The ARE (0 + 1)"1(0 + 1) ~ with {v2 = vl} 
cannot express that  the substrings associated with the instances of the operands 
of the stars denoted by vl and vu are identical. However, if the equivalence 
rule (0 + 1)* = (0"1)*0" is applied before, the ARE (0~11)~0~3(W41)~0v6 with 
{v5 = v2; v6 = v3; v4 = vl} is able to describe L2. 



T h e o r e m  2. The Augmented Regular Expressions does cover all the pattern 
languages, but the size of an A R E  describing a pattern language over Z is 
exponential in ILl. 

Proof. Let p be a pattern language over Z = {al, . . . ,  a,~) (m >_ 2) including 
some finite number of variables {xl, . . . ,  x,} (l _> 0). Each variable xi (1 < i < l) 
can be represented by an RE R~ = (al + ... + am)*. By applying repeatedly 
( P +  Q)* = (P* Q)* P*, an equivalent RE R~ without union operators is obtained 
that contains 2 m - 1 stars (this is easily shown by induction). Let /~'~ be an 
ARE with no constraint such that the stars of R~ are replaced by independent 
star variables. Let t(i) be the number of occurrences of xi in p. Each occurrence 
xij of xi in p gives rise to a duplicate o f / ~  with new star variables: R~ij. An 
ARE /~'p describing the language p can be stated by letting the star instances 

l 

of the AREs T~'il be independent and defining a set ~: of (2 rn - 1). ~ ( t ( i )  - 1) 
i----1 

equations of the f o rmv i jk=Vi lk  ( l < i < l ;  2 < j < t ( i ) ;  l < k < 2  r ~ - l ) .  [] 

On the other hand, it is obvious that  the class of pattern languages does 
not cover the languages represented by AREs. For example, the language of 
rectangles L(/~I) and the CFL {0"11v20 v3 ] v~ = vl + v3} cannot be described 
by any pattern language. 

3 String Recognition Through AREs 

The recognition of a string s as belonging to a language L(]~) can be clearly 
divided in two steps: parsing s by R, and if success, checking the satisfaction 
of constraints ~: by the star instances SI s (V)  that  result from the parse. If R 
is unambiguous, a unique parse and set of star instances SIs (V)  is possible for 
each s E L(R),  and therefore a single satisfaction problem must be analysed to 
test whether s C L(/~). 

3.1 P a r s i n g  S t r i n g s  b y  R E s  t o  B u i l d  t h e  S t a r  I n s t a n c e s  

Two algorithms for unambiguous RE parsing have been reported [1] which, given 
a string s and an RE R, respond whether s E L(R)  or not, and in the first case, 
build the corresponding set of star instances SIs (V).  The processing of the input 
string is divided in two phases: the recognition and construction phases. The 
first algorithm, with a time complexity of O(ls I �9 IRI), uses the RE R (alone) for 
recognition. The construction phase is a kind of re-run of the recognition phase 
in which it is known in advance that  the string will be successfully parsed by 
the RE, and thus, the true instances of the star variables can be recorded: To 
this end, the current star variable that  is involved in parsing is tracked, and the 
value of each new instance is computed by counting the number of consecutive 
matches of the operand of the related star. 

The second algorithm is a more efficient parsing method, that  can be run 
if the unambiguous RE R has been obtained from an equivalent DFA A (by 



applying a DFA- to -RE mapp ing  [1] based on Arden ' s  a lgor i thm [11]). This  will 
usually be the case if R has been inferred f rom examples. This a lgor i thm uses, 
besides the DFA A, some of  the REs a~j yielded by Arden 's  a lgor i thm 2 and the 

skeleton 3 of R. 
The key point  is tha t  A (instead of R) is used for recognition O(Is[), and tha t  

the pa th  of visited states guides the construction of the star instances s t ructure  
for the input  str ing s. There are two achievements tha t  permi t  to reduce the t ime 
complexi ty  of  the construction phase too. The  former  is to locate the substr ings 
of  s tha t  are associated with the cycles of the involved s tar - type  REs  by finding 
subpaths  of visited states tha t  s tar t  and end with the same state wi thout  passing 
th rough  it. The  lat ter  is to select directly the term of the involved union- type  
REs tha t  actual ly matches  the corresponding substr ing wi thout  the need of  
a t t empt ing  to parse the non-matched  terms [1]. Hence, the second a lgor i thm 
has a t ime complexi ty  of O(max{Iskel(R)l ,  n .  [sl}), due to the construction 
phase, where n is the number  of states of A, Is] and Iskel(R)l denote the lengths 
of  the input  string and the skeleton of R, respectively, and Iskel(R)l <_ IRI. 

3 .2 C o n s t r a i n t  S a t i s f a c t i o n .  

Given a star tree 7-, a set of star instances SIs (V)  for a certain string s, and 
two nodes vi,vj  C V, we say tha t  vi is a degenerated ancestor of vj (for s) 
iff vi is an ancestor of  vj in 7- and for each instance of vl in SIs(vi)  all the 
values of the instances of  vj in SI~ (vj) tha t  are derived f rom it are constant .  By 
definition, Lhe root  r is a non-degenerated ancestor of any other node v i.  Let 
vi C V U {r}, vj C V; we say that  vi is the housing ancestor of vj (for s) iff vi 
is the nearesl non-degeneralcd ancestor of vj (for s). 

In order to fulfil a constraint  of an ARE,  it is first required tha t  the involved 
star variables mus t  share a common  structure  of  instances for the given string 
s, i.e. the number  of instances of each one of  them must  be the same, and the 
corresponding instance values can be grouped,  one for each variable, in rows, 
one row for each cycle of the instances of a c o m m o n  ancestor. At first, it would 
seem tha t  the set of  related star variables should be brothers  in 7- (their father  
being the c o m m o n  ancestor). However, it should be noted tha t  if the values of 
the instances of  a certain son are always constant  for each instance of  its father,  
then a unique value m a y  be associated with it and so, regarding the instance list 
s tructure,  the son m a y  be p romoted  to a lower level in the tree. In such a case, we 
say that ,  with respect to the p romoted  son, the father is a degenerated ancestor. 

2 Let A = (22, Q, 6, q0, F) be a DFA, where ~ is an alphabet, Q = {q0,...,q~-i } is a 
finite set of states, qo(Q is the initial state, F C_ Q is a set of final states, and 6 is 
a state transition function. Let us assume that an arbitrary order < is established 
among states (except that the first state is q0). Then, c~j is an RE that denotes the 
set of strings that take the DFA from state q, to state qj without passing through a 
state qk with k < 1. 

3 The skeleton of an RE R describes R in terms of the languages corresponding to 
a determined subset of the paths of A and it is formed in a simplifying step after 
running Arden's algorithm [1]. 



This p romot ion  process m a y  continue until a non-degenerated ancestor is found 
or a default node (e.g the root  node r or a selected ancestor tha t  is shared with 
other star variables) is reached as housing ancestor. Each t ime a star variable is 
p romoted  to a lower level, all of  its redundant  instances must  be collapsed into 
a single one in order to fit in the same list s t ructure of  the degenerated ancestor. 

Moreover, even if a c o m m o n  housing ancestor is not  found, a set of 
star variables may  meet  a constraint  whenever all of  their housing ancestors 
are related by a strict equality. This fact ensures tha t  a c o m m o n  instance 
s t ructure  is available, even though  the star instances be not  constant ,  as it 
occurs in the A R E s  describing pa t te rn  languages. For example,  in the A R E  
(0Vll)'20"3(0v41)vh0 TM with {v5 = v2; v6 = v3; v4 = Vl}, the constraint  v4 = vl 
may  be met  because v5 and v2 can be the housing ancestors of  v4 and Vl, 
respectively, for a string s, and v5 = v2 m a y  also be met .  Now, let us summarize  
formal ly  the preceding explanation.  

Given a set of  s tar  instances SIs(V) ,  a star tree 7-, and a set of  linear 
equat ions /2, let rewrite each constraint  li E /:  by removing all the terms 
of  independent  variables with coefficient zero in the right hand  sides of the 
equations, i.e. Ii is v dep = ailv~ + .. + alk~v~ + aio, for 1 < i < nc, such tha t  
Vj  C [1, ki] : aij ~ O. Let vc E V be the deepest common ancestor in 9- of the 

r dep nodes iv~ , v~, ..., v~,}. Then,  we say tha t  SI~(V) satisfy a constraint  li E s iff 
r dep I V I i) the housing ancestors (for s) of  the nodes lvi , vl, ..., k~} are either vc or 

an ancestor of  v~, or they satisfy a strict equali ty constraint ,  and 
ii) the linear relation li is met  by the corresponding instances of 

dep I V t 
Vi , V l , ' " ,  k~}" 

The first condit ion above implies s t ructural  s imilari ty of  instance lists, while 
the second one requires the sat isfaction of the equation.  The  star instances 
SI~(V) satisfy s iff SI3(V) satisfy each constraint  l~ E/2,  for 1 < i < nc. Next, 
an a lgor i thm for constraint  test ing is described, tha t  evaluates the predicate 
sa t i s f y (S I~ (V) , s  and runs in O(1s I �9 height(T) �9 lY l"  I (S I , (V) ) ) ,  where 

I(SI~ (V)) ~--,~li,t,(O �9 , .  = max  2_,' - ne~emst~,j) is the max imal  number  of instances 
i=l,lvl ~=~ 

of  a star variable yielded by parsing s. 
In order to test li the instances of  the dependent star  variable v d-p, obtained 

in the parse of  s, are analysed. If  there is no actual  instance of v~ *p, the constraint  
is considered to be met.  Otherwise, the deepest c o m m o n  ancestor ve of the star 

. dep variables {v i , v~, ..., v~},  i.e. the first c o m m o n  ancestor going f rom each of  these 
nodes to the root  of  T ,  is selected as candidate  to c o m m o n  housing ancestor. 
To verify the linear constraint  li it is m a n d a t o r y  tha t  the instances of all the 
star variables involved in the relationship can be arranged in the structure of 
instances caused by the housing ancestor of v d~p (call it Vhi). Consequently, if 
any of  them (say v}) has a housing ancestor (say V h j )  tha t  is deeper than v~ 
and the equat ion Vhj = ?)hi is not  met  by the instances, then it means tha t  a 
shared s t ructure  of  instances is not  available for the string s, and therefore, the 
constraint  li is considered to be violated. In the case of  a star variable of  an 
A R E  having always a constant  value (v d~p = aio), no mat te r  its level in T ,  its 



housing ancestor will be the root  node, and obviously, all of  its actual  instances 
mus t  be collapsed to the value ai0 to verify the constraint .  

Finally, when the housing ancestor of  all the star  variables in li coincides 
with v~ or all the housing ancestors are related by strict equality, the constra int  
is tested on all the actual instances of v~ ep. To this end, these instances are 
arranged in a column vector B, whereas the corresponding instances of  the 
involved independent  variables are orderly put  as columns in a ma t r ix  A, together  
with an al l - l ' s  column associated with the constant  t e rm of the constraint .  Then,  
it suffices to test A �9 X -- B, where X is the vector of  coefficients in the r ight 
hand  side of  the constraint .  Consider the example  of  Fig.2. Given the constraints  
/:2 and the star instances displayed for the str ing s l ,  the a lgor i thm would set 
v13 as housed descendent of  the root  node r, and the rest of  s tar  variables of  V2 
as housed descendents of  via. In the main  loop, the six constraints  of  s would 
be checked. The  first one, v n  = Vl + v5 - v7, would lead to the successful test of  
the system A - X = B shown in Fig.3. The  rest of constraints  would be verified 
similarly. Hence, the string Sl of Fig.2 would be accepted as belonging to L(/~2). 

Primitives a b A A A  

and ~ c 
symbols e d 

A 

W 

sl = cS d3b3 d3b3 d3b3 d3 b3 c3 aa~ d2b2 d2b2 d2cSea~ dbdbcS a l~ c4 bdcl~ 1~ 
R ~ ( � 8 9  = ( c ' l ( d ~ b ~ a ) ~ " c ~ a ~ c ~ ' ( b ~ s d ~ ) ~ ~  ~3 

sA~(vl~) = ((2)  {-1,-1~ ) 
SIS 1 (Vl) = 
S L I ( v s )  = 
S L , ( v ~ )  = 
S L , ( v 4 )  = 
S L , ( v ~ )  = 

S L , ( ~ 3 )  = 

Fig. 2 

( (5 6) {1'1} ) $1~i(v7 ) = ( (3 4) {1'1} ) 
( (3 8) {1'1} ) S / s l (Vl l  ) = ( (5 10) {1'1} ) 
( (10 10) {1,1~ ) ,sI~,(v12) = ( (lO lO) ~1,1~ ) 
( (4 2) {1'1} ) SI~(v lo)  = ( (3 1) {1'1} ) 
( (3 3 3 3) {1J} (1 1) {1'2} SI~l(v8 ) = ( (2 2 2) {1'1} (1) {1'2} 
( (3 3 3 3) {1'1} (1 1) {1'2} SI~(vg)  = ( (2 2 2) {1'1} (1) {1'2} 

An example of pattern recognized by the A R E  R2 with its corresponding 

star instances. 

1st cycle of instance vj3 = 2 in sl 
2nd cycle of instance v13 = 2 in sl 

[!] [ vlvs 1153 
J 6 8 ] L l O j  

Fig. 3 Verification of the constraint vii -= vl + vs - vr through the matrix product 

A .  X = B (the top row o] the displayed A and B is just ]or labeling purposes). 
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4 C o n c l u s i o n s  

The Augmented Regular Expressions (AREs) permit to describe a class of 
context-sensitive languages (CSLs) capable of expressing multiple and complex 
constraints (e.g. planar shapes with symmetries). The recognition of a string as 
belonging to the language described by an ARE, which is based on parsing by 
the underlying RE and testing the constraints, is efficient, to the contrary of 
CSG parsing. Moreover, AREs provide a compact and intelligible representation 
of the associated languages. It has been shown that  AREs cover all the pattern 
languages [3], but the size of an ARE describing a pattern language is exponential 
in the number of alphabet symbols. It should be remarked that  the ARE 
representation may be extended in several ways. For example, the definition 
of non-linear constraints could be allowed (e.g. quadratic equations); however, 
this would highly complicate the ARE learning procedure [2]. To cope with 
noisy data, a robust recognizer should use an error-correcting regular parser and 
a tolerant constraint checker, which could be based on correlation and linear 
regression (instead of strict linear equations). 
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