
Efficient Recognition of a Class of
Context-Sensitive Languages Described by

Augmented Regular Expressions

Alberto Sanfeliu 1 and Ren@ Alqu@zar 2

1 Institut de Robbtica i Inform~tica Industrial, UPC-CSIC
Gran Capita 2-4, Edifici Nexus, 08034 Barcelona, Spain

Dept. LSI, Universitat Polit~cnica de Catalunya, Barcelona
sanfeliu@ic.upc.es, alquezax@lsi.upc.es

Abstract . Recently, Augmented Regular Expressions (AREs) have
been proposed as a formalism to describe, recognize and learn a non-
trivial class of context-sensitive languages (CSLs) [1, 2]. AREs augment
the expressive power of Regular Expressions (REs) by including a
set of constraints, that involve the number of instances in a string
of the operands of the star operations of an RE. Although it is
demonstrated that not all the CSLs can be described by AREs, the class
of representable objects includes planar shapes with symmetries, which is
important for pattern recognition tasks. Likewise, it is proved that AREs
cover all the pattern languages [3]. An efficient algorithm is presented to
recognize language strings by means of AREs. The method is spfitted in
two stages: parsing the string by the underlying regular expression and
checking that the resulting star instances satisfy the constraints.

1 I n t r o d u c t i o n

In order to extend the potential of application of the syntactic approach
to pat tern recognition [4], the efficient use of models capable of describing
context-sensitive structural relationships is needed, since most objects cannot
be represemed adequately by regular or context-free languages [5]. Moreover,
learning such models from examples is interesting to au tomate as much as
possible the development of applications. Context-sensitive g rammars [6] are
not a good choice, since their parsing is computat ional ly expensive and there is
not any available algorithm to learn them automatically. Augmented Transition
Networks (ATNs) [7] are powerful models that have been used in natural
language processing, but which are very difficult to infer [8]. Pat tern languages
[3] provide a very limited mechanism to take into account some context influences
(namely, the repetition of variable substrings along the strings of the language),
and some algorithms have been proposed to infer them from examples and
qu~eries [3, 9]. Nevertheless, the expressive power of pat tern languages is clearly
insufficient to cope with most of the context-sensitive structures (e.g. rectangles).

On the other hand, it is known that controlled (context-free) g rammars
can generate some context-sensitive languages (CSLs) [6]. By using a recursive

sequence of control sets on universal even-linear grammars, Takada has shown
that a hierarchy of language families that are properly contained in the class
of CSLs can be learned using regular inference algorithms [10]. Furthermore,
an efficient parsing procedure can be devised for each language in any of these
families, which is based on parsing successively by a set of universal even-linear
grammars [10]. However, the gap in expressive power between each of these
language families and the class of CSLs seems to be rather large, and it is
not clear what types of context relations can be described by the controlled
grammars.

Recently, Augmented Regular Expressions (AREs) have been proposed as a
formalism to describe, recognize and learn a class of CSLs, that covers planar
shapes with symmetries [1]. AREs are neither the regular-like expressions [6],
that are known to describe the family of CFLs, nor a type of regulated rewriting
[6]. Roughly speaking, an ARE R is formed by a regular expression (RE) /~, in
which the stars are replaced by natural-valued variables (called star variables),
and these variables are related through a finite number of constraints (linear
equations). Note that REs are reduced to AREs with zero constraints among
the star variables. A general method to learn AREs from examples is described
elsewhere [2]. Here, we deal with the problem of recognizing a given string as
belonging to the language described by an ARE, and we present an efficient
method to solve it.

2 A u g m e n t e d R e g u l a r E x p r e s s i o n s (A R E s)

Let S = {al,. . . ,am} be an alphabet and let A denote the empty string. The
regular expressions (REs) over S and the languages that they describe are
defined recursively as follows: 0 and A are REs that describe the empty set
and the set {A}, respectively; for each ai C Z (1 < i < m), ai is a RE that
describes the set {ai}; if P and Q are REs describing the languages Lp and
LQ, respectively, then (P + Q), (PQ) , and (P*) are REs that describe the
languages Lp U LQ, LpLQ and L~, respectively. By convention, the precedence
of the operations in decreasing order is �9 (star), (concatenation), + (union).
This precedence together with the associativity of the concatenation and union
operations allows to omit many parentheses in writing an RE. The language
described by an RE R is denoted L(R). Two REs P and Q are said to be
equivalent, denoted by P = Q, if they describe the same language. REs and
finite-state automata (FSA) are alternative representations of the class of regular
languages, and there are algorithms to find an RE equivalent to a given FSA
and viceversa [11, 12].

Let R be a given RE including ns star symbols (us > 0). The set of
star variables associated with R is an ordered set of natural-valued variables
V = {vl, ...,v~8}, which are associated one-to-one with the star symbols that
appear in R in a left-to-right scan. For vi, vj E V, we say that vi contains vj iff
the operand of the star associated with vi in R includes the star corresponding to
vj ; and we say vi directly-contains vj iff vi contains vj and there is no vk C V such

tha t vi contains vk and vk contains vj. The star tree 7- = (N, E, r) associated
with R is a general tree in which the root node r is a special symbol , the set
of nodes is N = V U {r}, and the set of edges E is defined by the con ta inment
relationships of the star variables: (i) an edge (r, vl) is created for each vi E V
tha t is not directly-contained by other star variable; (ii) for all vi, vj C V, if vi
directly-contains vj then an edge (vi, vj) is created (so vj is a son of vl). A simple
a lgor i thm to build the star tree 7- has been reported [1], with a t ime complexi ty
of O(]R] �9 h(R)), where h(R) is the depth of non-removable parentheses in R.

We say tha t a star variable v E V is instantiated, during the parsing of a
string s by RE R (from which V has been defined), each t ime the operand of
the corresponding star (an RE) is matched zero or some number of consecutive
t imes against a substr ing of s. The number of repeated matches (cycles) of the
star operand in an instance of v will be the value of v for tha t instance. Hence,
star variables can only take natura l numbers as values. However, we will see
that , for computa t iona l purposes, it is useful to assign a special value, say - 1 ,
to a star variable v, whenever v is not ins tant ia ted during a cycle of an instance
of its father in 7-. In this way, all the star variables tha t are brothers in the star
tree 7- will have the same structure of instances for a given string. Let us put it
more formally.

Let V be the set of star variables associated with an RE R. Given a
certain string s belonging to the language L(/~), a da ta s t ructure S I , (V) =
{S/~(vl) , ...SI,(v,~,,)}, called the set of star instances (of the star variables in V
for s), can be built during the process of parsing s by /~. Each member of the
set 5'I~ (V) is a list of lists containing the instances of a par t icular star variable:

Vi E [1,ns] : SI . . (v i)= (l[... l~,~t,(i)) where nlists(i) >_ 0

Vi E [1,ns] Vj E [1,nl is ts(i)] ' l j = (e}l ... e}(~l~,,,(i,j))) where nelems(i , j) >_ 1

The star instances stored in SI , (V) are organized according to the
conta inment relationships described by 7-. To this end, each list l} is associated

with two pointers father_list(lj) and father_elem(l~) tha t identify" the instance of

the father star variable f rom which the instances of vi in l~- are derived. Fig.1
shows an example of the star variable instances for a given string and RE, for
which the star tree 7- has four levels.

In general, for all the star variables tha t are in the first level of 7-, the
following structure arises:

Vvi, (, ' , v d e T - ~ SI~(vi) = (l~) A l~ = (41) A
father_list(l~) = - 1 A fa ther_elem(l~)=-1

i.e. nEsts(i) = 1 and nelems(i, 1) = 1; fur thermore, if v~ is not ins tant ia ted
in parsing s then e~l = - 1 else e~l > 0 is the number of matches of the star
operand in the only instance of vi. Otherwise, let v] be the father of vi in 7-.
For all the star variables tha t are in the second or higher levels of 7-, we have
the following general rule:

R -~-

V =
R(V/ .) =
7- =
S

SI , (v~) =
SI,(v~) =
SI~(v3) =
S L (v l) =
S l , (v2) =

Star tree
v

V
3

v V
1 2

Fig. 1

(a(b(ce'c + dr ' d) ') ') "
{ v l , v2, v3, v4, v s }
(a(b(ce~lc + df~2d)~3)~') ~
(y u ~, {(~, v~), (v~, ~,), (~,, ~) , (~, ~) , (v~, ~)}, ~)
abccdffdcecbddbdfdceecabceeec
((2) ~-~,-~t)
((3 1)(~,~)
((3 1 2) (~,~ (1) (~,~)
((0-1 1) ~ ,~ (-1) ~,~) (-1 2) (~,~ (3) (~,~))
((-1 2-1) (~,~ (0) ~ ,~ (1 -1)~ ~,~ (-1) (~,~)

r

(3 ~1)- Star instances

(0-1 1) ~ ~

An example o] star instances data structure.

. l i s t s (i) = # { ~ f k I ~5~ > 0} A vj e [1. n l i s t~(0] : . e l e m ~ (~ , j) = e~,k, A

father_tist(lj) = j ' A fath~r_dem(Zj) = k'

and e~. k is either a natural (the instance of vi in the k-th cycle of the instance
of v] identified by the pointers {j',k'}) or - 1 (if v~ is not instantiated in such
cycle). Two efficient algorithms for unambiguous 1 RE parsing that construct the
star instances structure have been reported [1].

An Augmented Regular Expression (or ARE) is a four-tupla (R, V,T,/:),
where R is a regular expression over an alphabet ~, V is its associated set of
star variables, 7- is its associated star tree, and L: is a set of independent linear

1 An RE R is ambiguous if there exists a string s E L(R) for which more than one
parse of s by R can be made.

relations {ll, ..., Inc}, that parti t ion the set V into two subsets V i~d, V &p of
independent and dependent star variables, respectively; this is

" a..yind a ind l i is V dep ---- ailV~l nd q- ..--}- za j + . .+ i(ni)Vni + aio , for 1 < i < nc

where ni and ne are the number of independent and dependent star variables,
respectively (and ns = nc + ni). The equations in /2 are only well-defined for
natural values of the involved variables. Moreover, the coefficients aij of the
linear relations will always be rational numbers.

Let /~ = (R, V, T, s be an ARE over Z, the language L(/~) represented by
/~ is defined as L(/~) = {c~ E Z* [a E L (R) and there exists a parse of
by _g in which the star instances S I ~ (V) satisfy s The formal definition of
the predicate s a t i s f y (S I ~ (V) , f~) is stated in the next section, together with the
description of the proposed method for string recognition.

The AREs permit to describe a class of context-sensitive languages by
imposing a set of rules that constrain the language of a regular super-set.
A very simple example is the language of rectangles described by the ARE
[{~ = (R I , V 1 , Z I , s with RI(V~/*) = aa~lbb~aa'3bb TM and Z;1 = {v3 = Vl,
v4 = v2}. However, quite more complex languages with an arbi trary level of
star embedment and multiple linear constraints can be described as well by the
ARE formalism. Consider, for instance, the ARE /~2 = (R2, V2,2r2, z;u) with
[~ 2 (V 2 / *) = (eV1(dV2bVa)V4cVSaVBcVr(bVsdVg)Vl~ via a n d ~C2 = {Vl l = Vl "+

v5--v7 , v12 = v6, v2 = v4--1, v3 = v4--1, v8 =0 .5v10+0.5 , v9 =0 .Svao+0 .5} .
Fig.2 shows an example that belong to L (/~) , given an alphabet of graphical
primitives {T a , / z b,---+ c, "x d, .[e}.

T h e o r e m 1. The Augmented Regular Expressions does nol describe all the
CSLs.

Proof. A counterexample is the language L1 = {a k I k = 2 i A i >_ 1}, which
is known to be context-sensitive [12]. L1 is not describable because AREs can
only filter the range of values of the star variables through linear relations, and
these relations only involve the star variables but not any external variable (such
as i in L1). Hence, there is no ARE /~ = (/~, V , T , s such that s can represent
the constraint vl = 2 i A i > 1 for R (V / *) = a vl. []

The context-sensitive language {a k [k is a prime } is another counterexam-
pie. Indeed, it seems reasonable to expect that a large class of CSLs will not b e
described by AREs either, due to the limited type of context constraints that
can be represented.

Consider now the CSL L2 = { x x] x E (0 + 1) +} that corresponds to the
pat tern language xx over the binary alphabet ~U = {0, 1}, where the variable
x stands for any string in Z + [a]. The ARE (0 + 1)"1(0 + 1) ~ with {v2 = vl}
cannot express that the substrings associated with the instances of the operands
of the stars denoted by vl and vu are identical. However, if the equivalence
rule (0 + 1)* = (0"1)*0" is applied before, the ARE (0~11)~0~3(W41)~0v6 with
{v5 = v2; v6 = v3; v4 = vl} is able to describe L2.

T h e o r e m 2. The Augmented Regular Expressions does cover all the pattern
languages, but the size of an A R E describing a pattern language over Z is
exponential in ILl.

Proof. Let p be a pattern language over Z = {al, . . . , a,~) (m >_ 2) including
some finite number of variables {xl, . . . , x,} (l _> 0). Each variable xi (1 < i < l)
can be represented by an RE R~ = (al + ... + am)*. By applying repeatedly
(P + Q)* = (P* Q)* P*, an equivalent RE R~ without union operators is obtained
that contains 2 m - 1 stars (this is easily shown by induction). Let /~'~ be an
ARE with no constraint such that the stars of R~ are replaced by independent
star variables. Let t(i) be the number of occurrences of xi in p. Each occurrence
xij of xi in p gives rise to a duplicate o f / ~ with new star variables: R~ij. An
ARE /~'p describing the language p can be stated by letting the star instances

l

of the AREs T~'il be independent and defining a set ~: of (2 rn - 1). ~ (t (i) - 1)
i----1

equations of the f o rmv i jk=Vi lk (l < i < l ; 2 < j < t (i) ; l < k < 2 r ~ - l) . []

On the other hand, it is obvious that the class of pattern languages does
not cover the languages represented by AREs. For example, the language of
rectangles L(/~I) and the CFL {0"11v20 v3] v~ = vl + v3} cannot be described
by any pattern language.

3 String Recognition Through AREs

The recognition of a string s as belonging to a language L(]~) can be clearly
divided in two steps: parsing s by R, and if success, checking the satisfaction
of constraints ~: by the star instances SI s (V) that result from the parse. If R
is unambiguous, a unique parse and set of star instances SIs (V) is possible for
each s E L(R), and therefore a single satisfaction problem must be analysed to
test whether s C L(/~).

3.1 P a r s i n g S t r i n g s b y R E s t o B u i l d t h e S t a r I n s t a n c e s

Two algorithms for unambiguous RE parsing have been reported [1] which, given
a string s and an RE R, respond whether s E L(R) or not, and in the first case,
build the corresponding set of star instances SIs (V). The processing of the input
string is divided in two phases: the recognition and construction phases. The
first algorithm, with a time complexity of O(ls I �9 IRI), uses the RE R (alone) for
recognition. The construction phase is a kind of re-run of the recognition phase
in which it is known in advance that the string will be successfully parsed by
the RE, and thus, the true instances of the star variables can be recorded: To
this end, the current star variable that is involved in parsing is tracked, and the
value of each new instance is computed by counting the number of consecutive
matches of the operand of the related star.

The second algorithm is a more efficient parsing method, that can be run
if the unambiguous RE R has been obtained from an equivalent DFA A (by

applying a DFA- to -RE mapp ing [1] based on Arden ' s a lgor i thm [11]). This will
usually be the case if R has been inferred f rom examples. This a lgor i thm uses,
besides the DFA A, some of the REs a~j yielded by Arden 's a lgor i thm 2 and the

skeleton 3 of R.
The key point is tha t A (instead of R) is used for recognition O(Is[), and tha t

the pa th of visited states guides the construction of the star instances s t ructure
for the input str ing s. There are two achievements tha t permi t to reduce the t ime
complexi ty of the construction phase too. The former is to locate the substr ings
of s tha t are associated with the cycles of the involved s tar - type REs by finding
subpaths of visited states tha t s tar t and end with the same state wi thout passing
th rough it. The lat ter is to select directly the term of the involved union- type
REs tha t actual ly matches the corresponding substr ing wi thout the need of
a t t empt ing to parse the non-matched terms [1]. Hence, the second a lgor i thm
has a t ime complexi ty of O(max{Iskel(R)l , n . [sl}), due to the construction
phase, where n is the number of states of A, Is] and Iskel(R)l denote the lengths
of the input string and the skeleton of R, respectively, and Iskel(R)l <_ IRI.

3 .2 C o n s t r a i n t S a t i s f a c t i o n .

Given a star tree 7-, a set of star instances SIs (V) for a certain string s, and
two nodes vi,vj C V, we say tha t vi is a degenerated ancestor of vj (for s)
iff vi is an ancestor of vj in 7- and for each instance of vl in SIs(vi) all the
values of the instances of vj in SI~ (vj) tha t are derived f rom it are constant . By
definition, Lhe root r is a non-degenerated ancestor of any other node v i. Let
vi C V U {r}, vj C V; we say that vi is the housing ancestor of vj (for s) iff vi
is the nearesl non-degeneralcd ancestor of vj (for s).

In order to fulfil a constraint of an ARE, it is first required tha t the involved
star variables mus t share a common structure of instances for the given string
s, i.e. the number of instances of each one of them must be the same, and the
corresponding instance values can be grouped, one for each variable, in rows,
one row for each cycle of the instances of a c o m m o n ancestor. At first, it would
seem tha t the set of related star variables should be brothers in 7- (their father
being the c o m m o n ancestor). However, it should be noted tha t if the values of
the instances of a certain son are always constant for each instance of its father,
then a unique value m a y be associated with it and so, regarding the instance list
s tructure, the son m a y be p romoted to a lower level in the tree. In such a case, we
say that , with respect to the p romoted son, the father is a degenerated ancestor.

2 Let A = (22, Q, 6, q0, F) be a DFA, where ~ is an alphabet, Q = {q0,...,q~-i } is a
finite set of states, qo(Q is the initial state, F C_ Q is a set of final states, and 6 is
a state transition function. Let us assume that an arbitrary order < is established
among states (except that the first state is q0). Then, c~j is an RE that denotes the
set of strings that take the DFA from state q, to state qj without passing through a
state qk with k < 1.

3 The skeleton of an RE R describes R in terms of the languages corresponding to
a determined subset of the paths of A and it is formed in a simplifying step after
running Arden's algorithm [1].

This p romot ion process m a y continue until a non-degenerated ancestor is found
or a default node (e.g the root node r or a selected ancestor tha t is shared with
other star variables) is reached as housing ancestor. Each t ime a star variable is
p romoted to a lower level, all of its redundant instances must be collapsed into
a single one in order to fit in the same list s t ructure of the degenerated ancestor.

Moreover, even if a c o m m o n housing ancestor is not found, a set of
star variables may meet a constraint whenever all of their housing ancestors
are related by a strict equality. This fact ensures tha t a c o m m o n instance
s t ructure is available, even though the star instances be not constant , as it
occurs in the A R E s describing pa t te rn languages. For example, in the A R E
(0Vll)'20"3(0v41)vh0 TM with {v5 = v2; v6 = v3; v4 = Vl}, the constraint v4 = vl
may be met because v5 and v2 can be the housing ancestors of v4 and Vl,
respectively, for a string s, and v5 = v2 m a y also be met . Now, let us summarize
formal ly the preceding explanation.

Given a set of s tar instances SIs(V) , a star tree 7-, and a set of linear
equat ions /2, let rewrite each constraint li E /: by removing all the terms
of independent variables with coefficient zero in the right hand sides of the
equations, i.e. Ii is v dep = ailv~ + .. + alk~v~ + aio, for 1 < i < nc, such tha t
Vj C [1, ki] : aij ~ O. Let vc E V be the deepest common ancestor in 9- of the

r dep nodes iv~ , v~, ..., v~,}. Then, we say tha t SI~(V) satisfy a constraint li E s iff
r dep I V I i) the housing ancestors (for s) of the nodes lvi , vl, ..., k~} are either vc or

an ancestor of v~, or they satisfy a strict equali ty constraint , and
ii) the linear relation li is met by the corresponding instances of

dep I V t
Vi , V l , ' " , k~}"

The first condit ion above implies s t ructural s imilari ty of instance lists, while
the second one requires the sat isfaction of the equation. The star instances
SI~(V) satisfy s iff SI3(V) satisfy each constraint l~ E/2, for 1 < i < nc. Next,
an a lgor i thm for constraint test ing is described, tha t evaluates the predicate
sa t i s f y (S I~ (V) , s and runs in O(1s I �9 height(T) �9 lY l" I (S I , (V))) , where

I(SI~ (V)) ~--,~li,t,(O �9 , . = max 2_,' - ne~emst~,j) is the max imal number of instances
i=l,lvl ~=~

of a star variable yielded by parsing s.
In order to test li the instances of the dependent star variable v d-p, obtained

in the parse of s, are analysed. If there is no actual instance of v~ *p, the constraint
is considered to be met. Otherwise, the deepest c o m m o n ancestor ve of the star

. dep variables {v i , v~, ..., v~}, i.e. the first c o m m o n ancestor going f rom each of these
nodes to the root of T , is selected as candidate to c o m m o n housing ancestor.
To verify the linear constraint li it is m a n d a t o r y tha t the instances of all the
star variables involved in the relationship can be arranged in the structure of
instances caused by the housing ancestor of v d~p (call it Vhi). Consequently, if
any of them (say v}) has a housing ancestor (say V h j) tha t is deeper than v~
and the equat ion Vhj = ?)hi is not met by the instances, then it means tha t a
shared s t ructure of instances is not available for the string s, and therefore, the
constraint li is considered to be violated. In the case of a star variable of an
A R E having always a constant value (v d~p = aio), no mat te r its level in T , its

housing ancestor will be the root node, and obviously, all of its actual instances
mus t be collapsed to the value ai0 to verify the constraint .

Finally, when the housing ancestor of all the star variables in li coincides
with v~ or all the housing ancestors are related by strict equality, the constra int
is tested on all the actual instances of v~ ep. To this end, these instances are
arranged in a column vector B, whereas the corresponding instances of the
involved independent variables are orderly put as columns in a ma t r ix A, together
with an al l - l ' s column associated with the constant t e rm of the constraint . Then,
it suffices to test A �9 X -- B, where X is the vector of coefficients in the r ight
hand side of the constraint . Consider the example of Fig.2. Given the constraints
/:2 and the star instances displayed for the str ing s l , the a lgor i thm would set
v13 as housed descendent of the root node r, and the rest of s tar variables of V2
as housed descendents of via. In the main loop, the six constraints of s would
be checked. The first one, v n = Vl + v5 - v7, would lead to the successful test of
the system A - X = B shown in Fig.3. The rest of constraints would be verified
similarly. Hence, the string Sl of Fig.2 would be accepted as belonging to L(/~2).

Primitives a b A A A

and ~ c
symbols e d

A

W

sl = cS d3b3 d3b3 d3b3 d3 b3 c3 aa~ d2b2 d2b2 d2cSea~ dbdbcS a l~ c4 bdcl~ 1~
R ~ (� 8 9 = (c ' l (d ~ b ~ a) ~ " c ~ a ~ c ~ ' (b ~ s d ~) ~ ~ ~3

sA~(vl~) = ((2) {-1,-1~)
SIS 1 (Vl) =
S L I (v s) =
S L , (v ~) =
S L , (v 4) =
S L , (v ~) =

S L , (~ 3) =

Fig. 2

((5 6) {1'1}) $1~i(v7) = ((3 4) {1'1})
((3 8) {1'1}) S / s l (Vl l) = ((5 10) {1'1})
((10 10) {1,1~) ,sI~,(v12) = ((lO lO) ~1,1~)
((4 2) {1'1}) SI~(v lo) = ((3 1) {1'1})
((3 3 3 3) {1J} (1 1) {1'2} SI~l(v8) = ((2 2 2) {1'1} (1) {1'2}
((3 3 3 3) {1'1} (1 1) {1'2} SI~(vg) = ((2 2 2) {1'1} (1) {1'2}

An example of pattern recognized by the A R E R2 with its corresponding

star instances.

1st cycle of instance vj3 = 2 in sl
2nd cycle of instance v13 = 2 in sl

[!] [vlvs 1153
J 6 8] L l O j

Fig. 3 Verification of the constraint vii -= vl + vs - vr through the matrix product

A . X = B (the top row o] the displayed A and B is just]or labeling purposes).

10

4 C o n c l u s i o n s

The Augmented Regular Expressions (AREs) permit to describe a class of
context-sensitive languages (CSLs) capable of expressing multiple and complex
constraints (e.g. planar shapes with symmetries). The recognition of a string as
belonging to the language described by an ARE, which is based on parsing by
the underlying RE and testing the constraints, is efficient, to the contrary of
CSG parsing. Moreover, AREs provide a compact and intelligible representation
of the associated languages. It has been shown that AREs cover all the pattern
languages [3], but the size of an ARE describing a pattern language is exponential
in the number of alphabet symbols. It should be remarked that the ARE
representation may be extended in several ways. For example, the definition
of non-linear constraints could be allowed (e.g. quadratic equations); however,
this would highly complicate the ARE learning procedure [2]. To cope with
noisy data, a robust recognizer should use an error-correcting regular parser and
a tolerant constraint checker, which could be based on correlation and linear
regression (instead of strict linear equations).

R e f e r e n c e s

1. R. Alquezar and A. Sanfeliu: "Augmented regular expressions: a formalism to
describe, recognize, and learn a class of context-sensitive languages." Research
Report LSI-95-17-R, Universitat Politecnica de Catalunya, Barcelona, Spain (1995).

2. R. Alquezar and A. Sanfeliu: Learning of context-sensitive languages described
by augmented regular expressions. Proc. 13th Int. Conf. on Pattern Recognition,
Aug.1996, Vienna, Austria (1996).

3. D. Angluin: Finding patterns common to a set of strings. J. Comput. System Science
21, 46-62 (1980).

4. H.Bunke and A.Sanfeliu (eds): Syntactic and Structural Pattern Recognition: Theory
and Applications, World Scientific (1990).

5. E. Tanaka: Theoretical aspects of syntactic pattern recognition. Pattern Recognition
28, 1053-1061 (1995).

6. A. Salomaa: Formal Languages, Academic Press, New York (1973).
7. W.A. Woods: Transition networks grammars for natural language analysis. CACM

13, 591-606 (1970).
8. S.M. Chou and K.S.Fu: Inference for transition network grammars. Proc. Int. Joint

Conf. on Pattern Recognition, 3, CA, 79-84 (1976).
9. A. Marron and K. Ko: Identification of pattern languages from examples and queries.

Information and Computation 74, 91-112 (1987).
10. Y. Takada: A hierarchy of language families learnable by regular language learners,

in Grammatical Inference and Applications, R.C.Carrasco and J.Oncina (eds.).
Springer-Verlag, Lecture Notes in Artificial Intelligence 862, 16-24 (1994).

11. Z. Kohavi: Switching and Finite Automata Theory, (2nd edition). Tata McGraw-
Hill, New Delhi, India (1978).

12. J.E. Hopfcroft and J.D. Ullman: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading MA (1979).

