Abstract
Automatic generation of models from a set of positive and negative samples and a-priori knowledge (if available) is a crucial issue for pattern recognition applications. Grammatical inference can play an important role in this issue since it is one of the methodologies that can be used to generate the set of model classes, where each class consists on the rules to generate the models. In this paper we present the recognition methodology to identify models in a outdoor scenes generated through a grammatical inference process. We will summarize how the set of model classes are generated and will explain the recognition process. An example of traffic sign identification will be shown.
Chapter PDF
Similar content being viewed by others
References
R. Alquezar and A. Sanfeliu, “Augmented regular expressions: a formalism to describe, recognize and learn a class of contextsensitive languages”, Research Report LSI-95-17-R, Universität Politecnica de Cataluyna, Barcelona (1995).
R. Alquezar and A. Sanfeliu, “An algebraic framework to represent finite-state machines in single-layer recurrent neural networks”, Neural Computation, 7, Sept.(1995).
K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, New York, (1982).
H.Bunke and A. Sanfeliu, Syntatic and Structural Pattern Recognition: Theory and Applications, World Scientific, (1990).
V.I. Levensthein, “Binary codes capable of correcting deletions, insertions and reservals”, Sov. Phys. Dokl, 10 (8), 707–10, Feb (1966).
W. Lei and N.M. Nasrabadi, “Invariant object recognition on neural network of cascaded RCE nets”, Int. Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, No.4, pp 815–829, (1993).
L. Miclet, “Grammatical inference,” in Syntatic and Structural Pattern Recognition: Theory and Applications, H.Bunke and A.Sanfeliu, Eds., World Scientific, 1990.
H. Murase and S.K. Nayar, “Learning object models from apearance”, Proc. of AAAI, Washington D.C., July 1993.
H. Murase and S.K. Nayar, “Visual learning and recognition of 3D objects from appearance”, International Journal of Computer Vision, Vol. 14, No. 1, pp 5–24, January, 1995.
D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning internal representations by error propagation”, in D.E. Rumelhart & J.L. McClelland (eds.) Parallel Distributed Processing: Explorations in Microstructure of Cognition Volo 1: Foundations, MIT Press (1986).
A. Sanfeliu and R. Alquezar, “Active Grammatical Inference: a new learning methodology”, in Shape and Structure in Pattern Recognition, D. Dori and A. Bruckstein (eds.), World Scientific Pub., Singapore (1995).
A. Sanfeliu and M.Sainz, “Aprendizaje automatico de modelos en vision por computador”, Proceedings of the XVI Jornadas de Automatica, San Sebastian, 27–29 Sept, (1995).
M. Sainz and A. Sanfeliu, “A first approach to learn the model of traffic signs using connectionist and syntactic methods”, Proceedings of the VI Simposium de Reconocimiento de Formas y Analisis de Imagenes, Cordoba, 3–6 April (1995).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sanfeliu, A., Sainz, M. (1996). Automatic recognition of bidimensional models learned by grammatical inference in outdoor scenes. In: Perner, P., Wang, P., Rosenfeld, A. (eds) Advances in Structural and Syntactical Pattern Recognition. SSPR 1996. Lecture Notes in Computer Science, vol 1121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61577-6_17
Download citation
DOI: https://doi.org/10.1007/3-540-61577-6_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61577-4
Online ISBN: 978-3-540-70631-1
eBook Packages: Springer Book Archive