Preview
Unable to display preview. Download preview PDF.
References
A.M.Bergé, J.Martinet and M.Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp., 54(1990), 869–884.
I.Gaál, On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp., 51(1988), 359–373.
I.Gaál, Power integral bases in orders of families of quartic fields, Publ. Math. (Debrecen), 42 (1993), 253–263.
I.Gaál, Computing all power integral bases in orders of totally real cyclic sextic number fields, Math. Comp., 65(1996), 801–822.
I.Gaál, Computing elements of given index in totally complex cyclic sextic fields, J.Symbolic Computation, to appear.
I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, I, J.Number Theory, 38 (1991), 18–34.
I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, II, J.Number Theory, 38 (1991), 35–51.
I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case, J.Number Theory, 53 (1995), 100–114.
I.Gaál, A.Pethő and M.Pohst, On the indices of biquadratic number fields having Galois group V 4, Arch. Math., 57 (1991), 357–361.
I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in quartic number fields, J.Symbolic Computation, 16 (1993), 563–584.
I.Gaál, A.Pethő and M.Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms — with an application to index form equations in quartic number fields, J.Number Theory, to appear.
I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in dihedral number fields, J. Experimental Math., 3(1994), 245–254.
I.Gaál and M.Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield, in preparation.
I.Gaál and N.Schulte, Computing all power integral bases of cubic number fields, Math. Comp., 53 (1989), 689–696.
D.Koppenhöfer, Über projektive Darstellungen von Algebren kleinen Ranges, Dissertation, Univ. Tübingen, 1994.
M.Olivier, Corps sextiques contenant un corps quadratique (I), Séminaire de Théorie des Nombres Bordeaux, 1(1989), 205–250.
N.P.Smart, Solving discriminant form equations via unit equations, J.Symbolic Comp., to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gaál, I. (1996). Application of thue equations to computing power integral bases in algebraic number fields. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_51
Download citation
DOI: https://doi.org/10.1007/3-540-61581-4_51
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61581-1
Online ISBN: 978-3-540-70632-8
eBook Packages: Springer Book Archive