Abstract
It was well known that it is easy to compute relative class numbers of abelian CM-fields by using generalized Bernoulli numbers (see [9]). Here, we provide a technique for computing the relative class number of any CM-field.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Louboutin, S.: Calcul des nombres de classes relatifs: application aux corps octiques quaternioniques à multiplication complexe. Note CRAS Paris 317 (1993) 643–646
Louboutin, S.: Calcul des nombres de classes relatifs de certains corps de classes de Hilbert. Note CRAS Paris 319 (1994) 321–25
Louboutin, S.: Calcul du nombre de classes des corps de nombres. Pacific J. Math. 171(2) (1996) 455–467
Louboutin, S., Okazaki, R.: The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Preprint Univ. Caen (1996) (to be submitted)
Louboutin, S., Okazaki, R., Olivier, M.: The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc. (to appear)
Okazaki, R.: On evaluation of L-functions over real quadratic fields. J. Math. Kyoto Univ. 31 (1991) 1125–1153
Okazaki, R.: An elementary proof for a theorem of Thomas and Vasquez. J. Nb. Th. 55 (1995) 197–208.
Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo 23 (1976) 373–471.
Washington, L.C.: Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Louboutin, S. (1996). A computational technique for determining relative class numbers of CM-fields. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_56
Download citation
DOI: https://doi.org/10.1007/3-540-61581-4_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61581-1
Online ISBN: 978-3-540-70632-8
eBook Packages: Springer Book Archive