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Abstract .  Array dataflow analysis can be exact in the general case 
when it involves only affine constraints on loop counters. This paper first 
presents an iterative method in the framework of Fuzzy Array Dataflow 
Analysis and then describes applications of fuzzy analysis on some usual 
techniques in compilation and parallelization. 

1 I n t r o d u c t i o n  

The performances of a compiler rely on its capacity to find in the source pro- 
gram the information it needs to optimize code generation or exhibit parallelism. 
Detailed information is provided by methods such as Array Dataflow Analysis 
[4, 7] designed to compute, for every array celt value read in a right-hand side ex- 
pression the very operation which produced it. However few methods can handle 
non-static programs. For programs using i f ,  whi le  loops or non-aNne array sub- 
scripts, no exact information can be hoped for in the general case. The purpose 
of this paper is twofold: describe an iterative method gathering partial informa- 
tion that  can be used in the framework of the Fuzzy Array Dataflow Analysis 
(FADA)[3] and present some applications of this technique such as program 
checking, parallelization and minimal memory expansion. 

2 F r o m  E x a c t  t o  F u z z y  A r r a y  D a t a f l o w  A n a l y s i s  

The basic problem of array dataflow analysis is, given an operation (R, y} called 
the "sink", which is an iteration of a statement R whose iteration domain is 
I(R), and an element a(g(y)) of an array a which is read by (R,y} to find the 
"source" of a(g(y)) in (R, y}. The source is an operation cr((R, y}) which writes 
into a(g(y)),  which is executed before (R, y) and such that  no operation which 
executes between c~((R, y}) and (R, Y} also writes into a(g(y)).  The computation 
of the source is in two steps: first compute the source for each statement, known 
as the direct dependence since [2], then combine these sources in the expression of 
cr((R, y)), as detailed in [4]. Suppose that  we are investigating source candidates 
from a statement S: (S, ~}, writing into array a at subscripts ;f(~). The candidate 
source has to verify the following constraints: 

- Existence predicate: (S, ~} is a valid operation: �9 E I(S). 
- Subscript equation: (S, x} and (R, y), access the same array cell: $(~) = g(y), 
- Sequencing condition: (s, x) is executed before (R, y): (S, ~} -~ (R, y), 
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- Environment: sources have to be computed under the hypothesis that  (1~, y) 
is a valid operation, i.e. y E I(R). 

The direct dependence is then given by (S, KS(Y)) where K s ( y  ) = max<<{x I ~ E 
I(S), f (~)  --- g(y), (S, ~} -~ (a, y)} and where << represents the lexicographic order. 

As soon as the program model includes conditionals, whi le  loops or non- 
affine do loop bounds or subscripts, the existence predicate and subscript equa- 
tion may contain non-linear terms and the exact computation of K s cannot be 
achieved in the general case. However, linear relations may be found between 
constraints in order to compute the smallest set of all the exact sources for 
any shape of the non-linear constraints verifying these relations. To reach this 
goal, a solution is to make the source depend on parameters representing the 
non-linear terms. Pugh and Wonnacott  [7] proposed to keep the parametric ex- 
pression of the non-linear functions in the source when they depend only on y. 
Given a statement S, they may be represented by the set of vectors D s ( y  ) for 
which they are verified, called parameter domain[i]. Note that  the dimension 
M s of the vectors of D s ( y  ) is lower or equal to the dimension of the iteration 
vector of S. The expression of K S ( y  ) is m a x L s ( y  ) N {ss I x[1..Ms] C Ds(y )}  
where L s is the set of vectors verifying all linear constraints. If K s (y )  is de- 
fined, there exists a vector /3S(y ) called parameter of the maximum such that  
K S ( y  ) = ma xL  s N {ml x[1..Ms] =/3S(Y)}. Hence the source can be computed 
as a function of the parameters of the maximum of all direct dependences. We 
have shown that  for any property P that is a relation of inclusion between union 
or intersection of parameter domains and linearly defined sets, the set of the 
parameters of the maximum corresponding to all the parameter domains verify- 
ing P is defined by linear constraints and is therefore computable [1]. The aim 
then is to find some properties on the parameter domains. This can be done by 
an algorithm based on the abstract symbolic tree of the program [3] and more 
precise relations may be found by analyzing the expressions of the non-linear 
constraints. 

3 I t e r a t i v e  A n a l y s i s  

The purpose of the iterative analysis is to find relations between the non-linear 
constraints coming from different statements so as to compare parameter do- 
mains. Given two constraints that are the same function but appear at different 
places in the program, we can say that they have the same value if the vari- 
ables they use are the same and have the same values. As a variable has the 
same value in two operations if it has the same source, the equality of the values 
of constraints may be proved in some cases by a dataflow analysis. Since this 
dataflow analysis can be fuzzy, the method can then be applied once more and 
eventually the fuzziness will be reduced by successive analyses. More formally, 
given two statements S and S~ writing into array a, we will suppose that only one 
non-linear constraint appears in the computation of K s ( y  ) and Ks , ( y  ). Let c 
and c' be the non-linear constraints respectively involved in K s (y) and K s, (y), 
appearing in statements T and T ~ . 
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- Part ia l  equality: the constraints c and c ~ are the same, use the same variables 
and a dataflow analysis shows tha t  these variables have the same sources in 
both  operations in a context C that  is defined by linear inequalities. The 
relation is D s A C = DS, N C. 

- Image of a paramete r  domain: the constraints c and d are the same, use the 
same variables and the sources of the variables of c at operation (T, ~) are 
the same as the sources of the variables of c' at operation (W', f ( x ) / ,  with f 
an affine function w.r.t, the iteration vector. The relation is f (D s) = DS,. 

These relations can be generalized to any number  of s tatements  and non-linear 
constraints. The reader is referred to [1] for technical details. 

4 A p p l i c a t i o n s  

We present thereafter the application of FADA to variable initialization checking 

and code parallelization. 

4.1 V a r i a b l e  I n i t i a l i z a t i o n  C h e c k i n g  

In a correct program,  all variables are initialized before they are used. Verifying 
this by a dataflow analysis can help to check the correctness of the program or 
validate some properties on non-linear constraints. When the analysis is fuzzy, 
the condition for which the source o f  the value of a does not come from S is 
a conjunction of affine constraints on y and flS' Let q(y) and r(y,~s)  be the 
predicates forming this condition. When the source comes from S, Vy E I(R) s.t. 
q(y) then r(y, flS) = false. According to the definition of the parameter  of the 
max imum,  this is equivalent to: Vy C I(R) s.t. q(y) = true, 3~ s.t. (r(y, ~) = 
false) A (c(y, x) = true) where c is the non-linear constraint involved. This 
condition can be generalized to any number  of direct dependences and non-linear 
constraints. Checking the condition can be left to the programmer  or submit ted 

to an assertion generator. 

4 .2  C o d e  P a r a l l e l i z a t i o n  

There are two basic techniques for extracting parallelism from a dependence 
graph: one consists in computing a schedule, the other one in computing a place- 

ment.  

Fuzzy Scheduling We must  guarantee that:  0(s, ~) + 1 <_ t~(R, y). In the result of 
the corresponding FADA, ~ is an affine function r of $ and of parameters  #S 
which must  satisfy a set of affine predicates P(~) .  We may refine the above 
inequality into y e : / (a) ,~ e P(Y) ~ t~(S,r + 1 <_ 8(R,y). Suppose we 
have expressed the schedule 0 as an affine form with unknown coefficients. Since 
everything is affine, we are in a position to apply Farkas lemma; the result is a set 
of linear equations in the coefficients of the schedule and new positive unknowns, 
the Farkas multipliers. These equations may be solved as in [5]. 
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Memory Expansion In order to take into account memory based dependences in 
the above schedule, a solution is to find the minimal memory expansion which 
is consistent with this schedule. The method presented by Lefebvre [6] can be 
used in the present case with little or no modification. Indeed, it is obvious 
that ,  even in the case of dynamic control structures and non-linear arrays, we 
may still compute an ordinary dependence graph. In the case of FADA, the 
shape of the source is exactly the same as in the exact analysis case, hence the 
same algorithms apply. In some cases, parameters will disappear, for instance, 
when expansion of a scalar has been deemed unnecessary. When a parameter 
is actually needed, its value must be recorded when the corresponding control 
operations are executed. If speculation has been used, this means that  a read 
operation may not be executed before the results of the controlling operations 
are known. This is a new constraint which has to be taken into account when 
computing the schedule. 

5 Conclusion 

Many applications in the compilation and parallelization field take advantage of 
our technique, with little change in their algorithms. The Fuzzy Array Dataflow 
Analysis extends the scope of variable initialization checking, code paralleliza- 
tion to some programs with dynamic control structures. Moreover, even a fuzzy 
result can give enough information for a significant improvement of the output  of 
these techniques. Further developments on the combination of compilation and 
parallelization methods with fuzzy analysis will be the subject of future work. 
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