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Abs t rac t .  It has been attracting much attention to make use of list 
homomorphisms in parallel programming because they ideally suit the 
divide-and-conquer parallel paradigm. However, they have been usually 
treated rather informally and ad-hoc in the development of efficient par- 
allel programs. This paper reports a case study on systematic and formal 
development of a new parallel program for the 2-dimensional maximum 
segment problem. We show how a stralghtforwardi and '%bviously" cor- 
rect, but quite inefficient solution to the problem can be successfully 
turned into a semantically equivalent "almost list homomorphism" based 
on two transformations, namely tupling and fusion, which are defined ac- 
cording to the specific recursive structures of list homomorphisms. 

1 I n t r o d u c t i o n  

It  has been at t ract ing wide at tention to make use of list homomorphisms in 
parallel programming.  Lis t  homomorphisms  are those functions on finite lists 
that  promote  through list concatenation - -  that  is, function h for which there 
exists an associative binary operator  | such that ,  for all finite lists xs and ys, we 
have h (xs -H- ys) = h xs • h ys, where +F denotes list concatenation. Intuitively, 
the definition of list homomorphisms means that  the value of h on the larger list 
depends in a particular way (using binary operation | on the values of h applied 
to the two pieces of the list. The computat ions of h xs and h ys are independent 
each other and can thus be carried out in parallel. This simple equation can 
be viewed as expressing the well-known divide-and-conquer paradigm of parallel 
programming. 

Therefore, the implications for parallel program development become clear; i] 
the problem is a list homomorphism,  then it only remains to define a cheap | in 
order to produce a highly parallel solution. However, there are a lot of useful and 
interesting list functions that  are not list homomorphisms and thus have no cor- 
responding | One example is the function ross known as (1-dimensional)  maxi-  
m u m  segment  sum problem, which finds the maximum of the sums of contiguous 
segments within a list of integers. For example, mss [3 , -4 ,  2 , - 1 ,  6 , - 3 ]  = 7, 
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where the result is contributed by the segment [2 , -1 ,  6]. The ross is not a list 
homomorphism, since knowing mss xs and mss ys is not enough to allow com- 
putation of mss (xs -H- ys). 

This paper reports a case study of a formal  and systematic derivation of 
a new efficient and correct O(log 2 n) (n denotes the size of a matrix) parallel 
program for the 2-dimensional  m a x i m u m  segment  sum problem via construction 
of (almost) list homomorphisms based on the idea in [HIT96]. This problem is 
of interest because there are efficient but non-obvious algorithms to compute it 
in parallel. In [Smi87], the tuple consisting of eleven functions is used for the 
definition of a O(log 2 n) parallel algorithm, but the detailed derivation, which 
would be rather cumbersome with Smith's approach, was not given at all. 

This paper is organized as follows. In Sect. 2, we review the notational con- 
ventions and some basic concepts used in this paper. After giving a specification 
for the 2-dimensional maximum segment sum problem in Sect. 3, we focus our- 
selves on deriving an efficient (almost) list homomorphism from the specification 
by using our two important  theorems, namely the Tupling and the Almost Fusion 
Theorems, in Sect. 4. Concluding remarks are given in Sect. 5. 

2 Prel iminary 

In this section, we briefly review the notational conventions known as Bird- 
Meertens Formalisms [Bir87] and some basic concepts which will be used in the 

rest of this paper. 

Functions 

Functional application is denoted by a space and the argument which may be 
written without brackets. Thus f a means f (a). Functions are curried and ap- 
plication associates to the left. Thus f a b means ( f  a) b. Functional application 
is regarded as more binding than any other operator, so f a | b means ( f  a) | b 
but not f (a @ b). Functional composition is denoted by a centralized circle o. By 
definition, ( f  o g) a = f (g a). Functional composition is an associative operator, 
and the identity function is denoted by id. Infix binary operators will often be 
denoted by | | and can be sectioned; an infix binary operators like | can be 

turned into unary functions by: (a@) b = a | b = (• b) a. 
The following are some important  operators (functions) used in the paper. 

- The projection function ~ will be used to select the i-th component of tuples, 
e.g., ~1 (a,b) = a. The a and x are two important  operators related to 

tuples, defined by 

( f ~ g )  a - - ( f a ,  ga) ,  ( f  x g) (a, b) -- ( f  a, gb)- 

The a can be naturally extended to functions with two arguments. So, we 

have a(@ ~ | b = (a @ b, a | b). 
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- The cross operator Xe,  which crosswisely combines elements in two lists 
with operator O, is defined informally by: 

[ x~ , . . - , xn ]  Xe  [yl, - -  ,~m] = [ x ~ e y l , . . - , ~ e y ~ ,  . - . ,  ~ e y ~ , - - . ,  z n e ~ m ] .  

The cross operator enjoys many algebraic identities, e.g., (]*) o Xe = X f o e .  
- The concat, a function to flatten a list, is defined by: 

concat [ x s l , . . . ,  xsn] = xsl -H- " -  ++ xsn. 

- The zip-with operator Te ,  a function to apply O pairwisely to two lists, is 
informally defined by 

Lists 

Lists are finite sequences of values of the same type. A list is either empty, a 
singleton, or the concatenation of two other lists. We write [] for the empty list, 
[a] for the singleton list with element a (and [.] for the function taking a to [a]), 
and xs ~-~ ys for the concatenation of xs and ys. Concatenation is associative, 
and [] is its unit. For example, the term [1] ++- [2] -H- [3] denotes a list with three 
elements, often abbreviated to [1, 2, 3]. 

List Homomorphisms 

A function h satisfying the following three equations will be called a list homo- 
morphism.  

h [] = be 
h [x] = ] x 
h (xs -H-ys) = h x s  ~ ) h y s  

It soon follows from this definition that  | must be an associative binary oper- 
ator with unit b e .  For notational convenience, we write (If, 0]) for the unique 
function h s, e.g., s u m  = (id, +9 and m a x  -= ~id, j~]), where r denotes the binary 
maximum function whose unit is -o r  Note when it is clear from the context, 
we usually abbreviate "list homomorphisms" to "homomorphism." 

Two important  list homomorphisms are map and reduction. Map is the op- 
erator which applies a function to every item in a list. It  is written as an infix 
�9 . Informally, we have 

f * [~,, x 2 , "  -, ~ ]  = [ / z~ ,  f ~ ,  �9 . - ,  f x~]. 

Reduction is the operator which collapses a list into a single value by repeated 
application of some binary operator. It is written as an i n f ix / .  Informally, for 
an associative binary operator O, we have 

0/ [Xl,X2,''" , xn]  : Z 1 0 X 2 " ' "  O X n .  

3 Strictly speaking, we should write (Ice, f, | to denote the unique function h. We 
can omit the ee because it is the unit of | 
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It is not difficult to see that  �9 and / have simple massively parallel implemen- 
tations on many architectures. For example, |  can be computed in parallel 
on a tree-like structure with the combining operator @ applied in the nodes, 
whereas f*  is totally parallel. The relevance of list homomorphisms to paral- 
lel programming can be seen clearly from the Homomorphism Lemma [Bir87]: 
~f, @D = (@/) o ( f . ) .  Every list homomorphism can be written as the composi- 
tion of a reduction and a map. 

As stated in the introduction, quite a lot of interesting functions are not 
list homomorphisms. Fortunately, Cole [Co193a] argued informally that  some of 
them can be converted into so-called a lmos t  (list) h o m o m o r p h i s m s  by tupling 
with some extra functions. To make this conversion be more formal and system- 
atic, we proposed the idea of construction of such almost homomorphisms via 
tupling and fusion transformations [HIT96]. As a matter  of fact, an almost list 
homomorphism is a composition of a projection function and a list homomor- 
phism. Since projection functions are simple, almost homomorphisms are also 
suitable for parallel implementation as list homomorphisms do. 

3 S p e c i f i c a t i o n  

Before giving a specification for the 2-dimensional maximum segment sum prob- 
lem, let's start with the simpler 1-dimensional maximum segment sum prob- 
lem ross (refer [HIT96, Co193b, CS92] for more detailed discussions), an exam- 
ple given in the introduction. An obviously correct solution to the problem is 
ross : l int] -+ I n t  defined by: 

ross = m a x  o ( s u m * )  o segs 

which is implemented by three passes; (1) computing all contiguous segments 
of a sequence by segs, (2) summing up each contiguous segment by s u m ,  (3) 
selecting the largest value by m a x .  

The only unknown function in the specification is segs : [Int] --+ [[Int]], 
computing all segments of a list. It would be likely to define it simply as 

segs (xs  44- ys )  = segs xs  -H- segs ys  44- ( tai ls  xs  X~_ in i t s  ys ) .  

The equation reads that  all segments in the sequence xs - H - y s  are made up of 
three parts: all segments in xs ,  all segments in ys ,  and all segments produced by 
crosswisely concatenating every tai l  s e g m e n t  of xs (i.e., the segment in xs ending 
with xs ' s  last element) with every in i t ia l  s e g m e n t  of ys (i.e., the segment in ys 
starting with ys ' s  first element). Here, in i t s  and tails  are standard functions in 
[Bir87], though our definitions are slightly different as will be seen later. Being 
simple, it is a wrong  de f in i t ion  for segs ,  as you may have noticed that,  for 
example, segs ([1, 2] -H- [3]) ~ segs ([1] ++ [2, 3]) while they are expected to be 
equal (to segs [1, 2, 3]). A closer look reveals that the two resulting lists indeed 
consist of all segments of [1, 2, 3] but  in different order. One way to remedy this 
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ross : [(Index, In t  ) ] -+ In t  
mss = m a x  o ( s u m ' , )  o segs 

where 

?nax 
sum '  = 
s e g s  [] = 
s e g s  [x] = 

segs (xs -H- ys) = 
inits [] = 
inits [x] = 
inits (xs -H- ys) = 
tails [] = 
tails [x] = 
tails (xs -H- ys) = 

~id, $) 
~id, A((i, x), (j,  y ) ) . x  + y )  
[] 
[[x]] 
segs xs -H--~ segs ys - ~  (tails xs X ~  inits ys) 
[] 
[[x]] 
inits xs 44- (xs -H- ) * ( inits ys) 
[] 
[[~]] 
(-H- ys ) * (tails xs ) 44- tails ys 

Fig.  1. Specification for ross Problem 

situation is to force segs to give result of a sorted list under a total order, say 
-4, and thus we can define segs correctly as 

segs (xs ++ ys) = segs xs 44--< segs ys ++4 (tails xs 2#~_ inits ys) 

where - ~  merges two sorted lists into one with respect to the order of -~. 
Let's see how we can define such -4 in a simple way. Let [ x i l , x i t + l , . . .  ,x j l]  

and [xi2, x i 2 + l , . . . ,  xj2] be two segments of the presumed list [xl, �9 �9 -, xn]. Then, 
-4 is defined by [Xil ,XQ+I, ' . . ,Xjl  ] -~ [Xi2,:~i2Wl,...,Xj2 ] ~-de.f ( i l , ' " , j l )  <1) 
(i2, ' '"  , j2 ) ,  where <D stands for the lexicographic order. To capture the index 
information in our specification, we extend the input type of mss and segs from 
lists of integers, [Int], to lists of pairs of index and integer, [(Index, Int)]. 

So much for the specification of the mss problem, which is summarized in 
Fig. 1. It  is a naive solution of the problem without concerning efficiency and 
parallelism at all, but its correctness is obvious. 

Let's turn to the specification for the 2-dimensional maximum segment sum 
problem, mss2, a generalization of mss, which finds the maximum over the 
sum of all rectangular subregions of a matrix. The matrix can be naturally 
represented by a list of lists with the same length as shown in Fig. 2 (a), and so 
does its rectangular subregion as in Fig. 2 (b). Following the same thought we 
did for mss ,  we define mss2 straightforwardly as in Fig. 3. Here, segs2 computes 
all rectangular subregions of a matrix, then sum2 is applied to every rectangular 
subregion and sums up all elements, and finally m a x  returns the largest. 
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[ [xl l ,  x12 ..... xln], 
[x21, x22 .....  x2n], 

(xm 1 ,xm2 ..... xmn] 

(a) Matrix in list of lists (b) rectangular region 
(submatrix) 

(c) segs2(xss++yss) 

XSS 

y s s  

a n  

.l 

A 

[ ... [al,...,an],[bl,...bm],...] 

(d) bots yields a list of lists of 
bottom-up rectangles 

d 
[ .... ci, ] 
(e) bts yields a list of rectangles 

passing vertically 

F i g .  2 .  T h e  mss2 P r o b l e m  

ross2 = m a x  o (sum2*)  o segs2 

where 

sum2 
segs2 [] ---- 
segs2 [xs] = 
segs2 (xss -H- yss) = 

bots [] = 
bots [xs] = 
bots (xss ~ yss) = 
tops [] = 
tops [xs] = 
tops (xss -4-1- yss) = 
bt~ [] = 
bts [~s]  = 
bts (xss -H- yss) = 
s~gs' [] = 
segs' [x] = 
segs' (xs ~ ys) = 

S~tgYt 0 8 z t m t  , 

[] 
[.] �9 (s~gs' xs) 
segs2 xss -qq-.~, segs2 yss q-+_<, 

co,~cat ((bots ~ss)rx~_ (tops yss)) 
[] 
[.] �9 ([.] �9 (s~gs' ~s ) )  
((bots xss) :F;~(~,y).(~u),~ (bts yss)) T ~  (bots yss) 
[] 
[.] �9 ([.] �9 (s~gs' ~s)) 
(tops ~ss) Y§ ((bts ~ss) rx(~,~).((~§ (tops yss)) 
[] 
['] * (segJ xs) 
(bts xss) T& (bts yss) 
[] 
[[x]] 
segs' xs -q-t-_<, segJ ys -4-+-<, (tails xs X +  inits ys) 

F i g .  3 .  S p e c i f i c a t i o n  fo r  ross2 P r o b l e m  
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Function segs2 is defined in a quite similar way to segs.  The last equation 
reads that  all rectangular subregions of xss ++ yss,  a matrix connecting xss  

and yss vertically (Fig. 2 (c)), are made up from those in both xss and yss,  

and those produced by combining every bottom-up rectangular subregion in xss 

(depicted by shallow-grey rectangle) with every top-down rectangular subregion 
in yss (depicted by dark-grey rectangle) sharing the same edge. 

Let's see the definition of the total order ~ '  among rectangular subregions. 
Note that  the index type Index  I in this case should be a pair denoting the row and 
column of elements. So we define -~' by [[((rl, cl), xl),.- .] , . . . ,  [.. . ,  ((r2, c2), x2)]] -~' 

! ! I ! I [[((r l ,  Cl), y l ) , " "  " ] , ' ' ' ,  [ ' ' ' ,  ((r2,  C2), Y2)]] -~-def ( ( r l ,  C1), (r2: c2)) <o ((rll, Cl), ! t (~, ~)). 
For other functions in Fig. 3, bots is used to calculate a list of lists each of 

which comprises all rectangles with the same bottom edge. Symmetrically, tops 
calculates a list of lists each of which comprises all rectangles with the same 
top edge. They are defined by using another function bts which yields a list of 
rectangles passing through the matrix vertically (Fig. 2 (e)). The function segs ~ 
is almost the same as segs except that  it is defined under the order of ~ rather 
than -~. Although segs and segs' could be unified into a single function by means 
of overloading, they are defined independently for simplicity. 

4 D e r i v a t i o n  

Our derivation of an almost homomorphism from the specification in Fig. 3 is 
carried out in the following procedure. 

1. Derive an almost homomorphism from the recursive definition of segs2 (Sect. 4.1); 
2. Fuse ( s u m 2 . )  with the derived almost homomorphism to obtain another 

almost homomorphism and repeat this fusion for m a x  (Sect. 4.2); 
3. Let 7rl o (If, | be the result obtained in (2). If f or | are much complicated, 

repeat (1) and (2) to find an efficient parallel implementation for f and @ 
(Sect. 4.3). 

4.1 D e r i v i ng  a l mos t  h o m o m o r p h i s m s  

Our approach is based on the following theorem. For notational convenience, we 
define A ~ f  i = f l  ~ .t:2 ~ "'" ~ fn .  

T h e o r e m 1  (Tupl ing  [HIT96]) .  Let h i , - - - ,  h,~ be mutually defined by: 

hi [] = L| 

hi [x] = fi x (1) 

Then A ~ h i  = ([A~fi ,  A~@i~ ' and (~$1 , ' " ,  ~ )  is the unit of A~@ i. [] 
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Theorem 1 says that  if hi is mutually defined with other functions (i.e., 
h2, . . ,  ha) traversing over the same lists in the specific form of (1), then tupling 
h i , ' . ' ,  hn will give a list homomorphism. Let 's see how the tupling theorem is 
used in deriving an almost homomorphism from the definition of segs2 given in 
Sect. 3. 

First, we determine what functions are to be tupled, i.e., h i , . - . ,  h,~. As the 
tupling theorem suggests, the functions to be tupled are those traversing over 
the same lists in the mutual definitions. So, from the definition of segs2: 

segs2 ( xss -H- yss) = segs2 xss-H-_<, seqs2 yss-H-.<, concat( ( bots xss)Tx~ (tops yss) ) 

we know that  segs2 should be tupled with bots and tops, because segs2 and bots 
traverse over the same list xss whereas segs2 and tops traverse over the same 
list yss as underlined. Similarly, the definitions of bots and tops requires that  
bts be tupled with bots and tops. In summary, the functions to be tupled are 
segs2, bots, tops and bts, i.e., our tuple function will be: 

segs2 ~ bots ~ tops ~ bts. 

Next, we rewrite the definition of each function in the above tuple to be in 
the form of (1), i.e., deriving f l ,  @1 for segs2, f2, | for bots, f3, O3 for tops, and 
f4, O4 for bts. This is straightforward. The results are as follows. For example, 
from the  definition of segs2, we can easily derive that  

s xs = [-] * (segs' xs) 
( s 1, bl, t 1, dl ) �9 1 (s2, b2, t2, d2 ) = S 1 -H--~, s2 -H-.<, con cat (bl Tx~ t2) 
f2 xs = [-] �9 ([.] �9 ( s v s '  xs)) 
( s l , b l , t l , d l )  02 (s2,b2,t2,d2) = (51 Tx(~,y).(~).~ d2) T~  52 
f3 xs = ['] * (['] * (segs' xs)) 
(sl ,  51, tl ,  41) e~  (s~, 52, t2, d2) = tl T §  (dl T~(~,~) ((~§ t~) 
/4 xs = [-] �9 (segs' ~s) 
(sl, bl, tl ,  dl) O4 (s2, b2, t2, d2) = dl T~- d2 

Finally, we apply Theorem 1 and get the following list homomorphism. 

segs~ ~ bots ~ top, ~ bt~ = r  ~ o , D  

And our almost homomorphism for segs2 is thus obtained: 

4.2 Fusion with  Almost  Homomorphi sms  

In this section, we show how to fuse a function with an almost homomorphism. 
Our fusion theorem for this purpose is given below. 

T h e o r e m 2  ( A l m o s t  Fus ion  [HIT96] ) .  Let {~A~fi, A~| and h be given. 
If there exist | (i : 1 , - - . ,  n) and a map Ah : hi x ..- • hn where hi : h such 
that  for all i, Vx, y. hi (x @4 Y) = (Ah) x | (Ah) y, then h o (Th o (~A~fi, A~@~])) = 

7h o (~A~(hi o fi),  A~| [] 
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Returning to our example, recall that we have reached the point: 

mss2 -= max  o (sum2*) o (Tq o ~A4fi, A4@i~). 

We can fuse sum2* with 71" 1 o ~a4fi, a4| D by Theorem 2, and then repeat this 
fusion for max, giving the following result. 

4 t 4 t 
~2S82 : 7l" 1 0 ( I , ~ l f ~ ,  a l |  ( 3 )  

where 

and 

(sl, b], tl, dl) @~ (s2, 
(Sl, bl, tl, dl) | (s2, 
(sl, bl, tl,  dl) | (s2, 
(sl, bl, tl,  dl) @~ (s2, 

b2,t2,d2) = sl  ~ s2 ~ (J ' /(bl  Tx+ t2)) 
b2, t~, d2) = (bl r+ d2) :r, b~ 
b2, t2, d2) = tx r t  (dl T+ t2) 
b2, t2, d2) -- dl T+ d2 

f~ = max o (sum'*) o segs' 
/~ = ( s u m ' , )  o segs '  
1~ = ( s u m ' , )  o sr 
/ I  = ( s ~ m '  , ) o segs'  

4.3 Improving Operators in List Homomorphisms 

Equation (3) has given a homomorphic solution to the 2-dimensional maximum 
segment sum problem. Let n be the size of the input matrix. By a simple 
divide-and-conquer implementation of list homomorphisms, the derived pro- 
gram can expect an max(O(A4f[) ,  (O(log n) * O(A4@~))) parallel algorithm. 
With assumptions that T o and A'| can be implemented fully in parallel, i.e., 
O(T| = O(| and O(X| O(| we can see that 4 , = O(Al |  = O(log n) due 
to the inherited parallelism in the reduction (j ' /).  It follows that mss2 is a 

max(O(A4y~), O(log 2 n)) 

parallel algorithm. It is, however, not so obvious about efficient parallel imple- 
mentation of, e.g., f~ (similar to 1-dimensional mss problem except for different 
index order). We can derive (almost) list homomorphisms for it using the above 
derivation strategy again, giving a O(log n) parallel algorithm. (see [HIT96] for 
a detailed derivation for mss). 

5 C o n c l u d i n g  R e m a r k s  

In this paper, we demonstrate our derivation of an efficient parallel algorithm for 
the 2-dimensional maximum segment sum problem. It is based on the manipula- 
tion of (almost) homomorphisms, namely the construction of almost homomor- 
phisms from recursive definitions (Theorem 1) and the fusion of a function with 
almost homomorphisms (Theorem 2). After the initial solution, all the derivation 
are proceeded in a formal setting based on our theorems and algebraic identities 
of list functions. Therefore, the resulting parallel algorithm is guaranteed to be 
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semantically equivalent to the initial naive but inefficient solution. This is in 
sharp contract to Cole's informal approach [Co193b, Co193a]. 

Smith [Smi87] applied a strategy of divide-and-conquer approach to the same 
problem as an application. He constructs the composing operator (analog to our 
associative operator | by employing the suitable mathematical properties of 
the problem. Although our initial specification is less abstract than his, our 
derivation is more systematic and less prone to errors (Sect.4) In [Smi87], the 
tuple consisting of eleven functions is given for the 2-dimensional mss problem, 
and the corresponding manipulation with Smith's approach must be cumbersome 
(Smith does not present them). 
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