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A b s t r a c t .  An approach to data-parallel computing is presented which 
avoids annotation by introducing a type system with symmetric sub- 
typing. The properties that are usually specified in annotations in a 
machine-dependent way become deducible from type signatures of data 
objects. The chief advantage of the method is that it caters for portabil- 
ity by presenting a data description in terms of algorithmic properties 
(most importantly symmetry of data and of access to it) rather than any 
machine-specific terms. 

1 Introduction 

Significant effort invested into the development of t tPF and similar languages 
shows the importance of array properties, such as distribution, alignment, etc for 
efficient generation of code. However, the use of a virtuM machine for data  par- 
allelism with a (very specific) rectangular array processor structure and equMly 
specific data  distribution modes poses the questions of exactly how much must 
the user know about  the construction of the machine to produce efficient code 
and whether this code could survive a change of the hardware platform. 

The central issue here is one of describing a hierarchy of array properties in 
a sufficiently abstract way, but  not too abstract in order to keep the bearing on 
reM hardware. This is precisely the main difficulty too: what is "too abstract" 
depends on the assumptions the code designer has to make and what if they are 
wrong. Should we have to move on to a Fortran 2000 because nonrectangular 
arrays become rife and the most efficient distribution mode is finally pseudo- 

random? 
The characteristic feature of yon Neumann computing is its impressive ability 

to approximate the hardware. We have expressions in languages and the machine 
has commands. So expressions are turned into commands by a compiler and 
still the programmer can think expressions and loosely identify commands as 
"operations" - -  whence comes most of the usable part of complexity theory. The 
hardware instructions may change after porting the code to a different machine, 
but  the operations will not, nor will the cost intuition based on them. Why can 
we not expect the same in the parMlel domain? 

The  answer lies with the nature of approximation in the DP paradigm. It is 
extremely difficult to regard the translation process as one which simply brings 
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granularity down to singular atomic actions of the hardware (by compiling down 
the chain "functions --* statements ~ operations -+ instructions"). Because of 
the complex spatial structure of distributed array objects and high communica- 
tion costs the operational decomposition of an algorithm is inferior to a spatial 
decomposition of a data structure. As we decompose a yon Neumann algorithm 
into instructions of decreasing granularity, so we should be able to decompose 
a data-parallel (DP) object 's type into a system of subtypes of decreasing ab- 
straction. It should be noted, however, that while operational decomposition is 
implicit and is done by a compiler, the breaking-down of a type into subtypes 
has got to be explicit and known to the programmer. The compiler can only 
choose which subtypes to recognise and efficiently translate; others will not be 
distinguished from their supertypes. 

To summarise, here is the proposed translation scheme. In the source pro- 
gram, data objects are typed using a type system rich enough to reflect any 
access feature or other particularity of a distributed object following from the 
algorithm and so, by definition, machine-independent. Some of these properties 
will be important  for implementation on a particular machine, some will not. If a 
feature is not important  for a given implementation, the compiler will ignore the 
subtype and use the supertype (i.e. approximate). It will then use the operators 
defined in the supertype to support computing with the subtype. The result of 
such computation should be consistent with the approximation used. 

By itself, this is very similar to the agenda of OOP with its subclasses and 
inheritance. There is, however, an important  distinction. The OOP approach 
makes types rigid; the use of implicit coercions is very limited indeed even when 
operators naturally extend to a variety of nested types. With OOP, it is believed 
to be a virtue of the method that  the programmer has to be constantly aware 
of precisely the data  types being used, so that no unexpected ambiguity occurs. 
Since the intention of our type system is approximation, we have to require 
that  all versions of an operator are homomorphic, so an automatic coercion not 
anticipated by the programmer would not ruin the consistency of the program. 

The nature of approximation "in space" is nothing new either. Consider what 
we do with the shapes of three-dimensional objects, say pieces of wood, in real 
life. If a craftsman needs to process such an object, he may have a tool for the 
simplest particular case, for example, a cubic shape. Such a shape is characterised 
by the fewest parameters and can be processed very efficiently. What  if the same 
processing needs to be done on a more complex shape, e.g. a parallelepiped? 
There may be a tool for that,  too, albeit less efficient. Such a tool would work on 
a cube (since a cube is an instance of parallelepiped). Finally there may be a tool 
that  does the job on an arbitrary prism, perhaps even less efficiently: it would 
still have to be applicable to the previous two cases of the object as they are 
instances of prism, too. This example shows that  the classification principle in 
3d can be identified with the spatial symmetry of objects. The less symmetry  an 
object has the greater generality and the more senior its type in the subtyping 
hierarchy. 

Symmetry  is indeed the key to any spatial approximation. We can easily iden- 
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DIMENSION Q(IL,JL,KL), V(KL), W(JL,IL) 

DO I=l, IL 
DO J=l ,  JL 

DO K=I,KL 
Q (I, J,K)--V (K)*W (J,I) 

END DO 
END DO 

END DO 

Fig. 1. Example of a vectorisable loop nest 

tify certain symmetries that  are important for data parallelism, not all of them 
being purely geometric. The following sections will introduce translational sym- 
metry (which is essentially one of replication), affine symmetry (which comes 
from analysis of constant-strided integer objects) and the symmetry of dis- 
tributed access. We shall define and exemplify the type lattices corresponding 
to our classification and shall introduce appropriate coercion rules. 

FinMly, the general model limitation, which we shall assume hereinafter, is 
that  nested DP computing (in the sense of [Ble93]) is not supported, although 
it appears nesting would not change the nature of fundamental D P  symmetries 
too much. It nevertheless requires a separate study. 

2 T r a n s l a t i o n a l  s y m m e t r y  

Fig 1 shows an example of a vectorisable loop nest as it appears in Fortran. This 
example uses 3 arrays of different ranks in a treble loop nest. Consequently, some 
of the indexed variables will not depend on some of the loop indices, for example 
V(K) is not affected by I- or J-iterations and W(J,I)  does not change with 
iterations in K. According to f-code[MSS93] this symmetry should be interpreted 
as orientation of operands to a DP operation and should be defined statically 
using constant Boolean masks. 

D e f i n i t i o n l .  An m-orientation of a rank-I~ array A is an array object that, 
if  indexed with [io, i l , . . . ,  i~], where r equals the length of the mask [ml, selects 
the element [j0, j l , . . . ,  JR] of the array A, with the indices [j0, j l , . . . ,  jn] drawn 
from [ io , i l , . . . , i r ]  according to the Boolean mask m in order. The number of 
ones in a Boolean mask is called the character of the mask and is denoted [sin. 
For any valid orientation of A, Drn = R. 

Note that  orientation introduces translational symmetry in each result di- 
mension corresponding to a zero in the mask. 

Using orientations instead of the originM arrays one can bring the example 
in fig 1 to a common dimensionality and then drop the explicit iteration space 

Mtogether: 
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Q=[ool]v �9 [lio]w' 

where the prime denotes matr ix transposition. The notation here is syntactically 
similar to the "numbers in brackets" of APL 2[BPP88]. 

In a complete DP world, a function can be applied to a nonscalar argument. 
Although we can limit our analysis to a function of a single argument (and use 
currying), it has to have a certain rank: since the rank is a component of the 
multi-type, a function should have to have a static type signature in the rank 
component.  If a function is applied to an object of a rank higher than the one 
the function assumes for the argument, this can only be interpreted as a DP 
application of the function in the co-space of the argument. 

D e f i n i t i o n 2 .  An m-orientation of a function of a rank-r argument is a function 
that accepts an array argument of a higher rank R = Iml > r. It uses a subset 
of the argument indices, according to the mask m, with the rest of the indices 
appended to the index list of the function result. 

The type inclusion relation for types of translational symmetry follows from 
the fact that  the lack of symmetry along an axis is a more general case than its 
presence, taking into account that symmetries associated with different axes are 
independent. 

D e f i n i t l o n 3 .  Let two objects x and y have different rank masks p(x) • p(y), 
with the actual ranks being the same: Ip(x)l = IP(Y)I = r. Then the type inclusion 
relation p(x) C p(y) is defined by the partial order (Vi : 1..r)p(x)i <_ p(y)i, 
according to the standard subsumption. 

The orientation symbol used above for array orientation (a mask in square 
brackets) has the following "rank-mask signature": 

aw(m,j) i fmj  = 1 
(Va: ]el = Dm)[ma..m,]: {hi} -+ {by}, wherebj = 0, otherwise 

Here ~(m, j) = ~{=1 ink. Finally, let us join all rank lattices together at the 
bot tom, by making every scalar type a member of all ranks since this only 
introduces unambiguous upgrading coercions. 

3 I n d i v i d u a l  a c c e s s  s y m m e t r y  

Abstract parallelism of data can be described as the lack of interference between 
different elements of a nonscalar assignment so that the hardware may perform 
all elemental assignments at once. In practice, however, a distributed imple- 
mentat ion would perform DP assignment in a certain fuzzy order to minimise 
the communication and scheduling costs. In the simplest case of a rectangular 
processor array, data objects participating in the same DP operation will be co- 
mapped onto the array with a certain block size. Although scheduling of different 
blocks may be totally independent, within a block computing would have to be 
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strictly serial. Such an arrangement  is less symmetr ic  than the source DP model, 
but  the user does not see much operational manifestation of that  (i.e., in terms 
of what  can and what can not be done with a given data  object). To separate 
out objects with different symmetr ies  we shall introduce an a priori access cost, 
which is an asymptot ic  (N  >> 1, with N being the object size) measure that  
guides the user in the choice of the correct access type. 

D e f i n i t i o n 4 .  The a priori access cost is a triple (c~,ca,cp), where c~ is the 
cost of t o t a l  access ,  i.e. retrieval of all items of the arrangement, but not nec- 
essarily in order; ca is the maximum cost o f a t f i n e  access ,  i.e. an arrangement 
of array elements with the indices forming an arithmetic progression, and cp is 
the maximum cost of r a n d o m  access .  

Now we are in a position to introduce access subtypes, initially for a single 
dimension of an array, by giving upper bounds to the corresponding access costs. 

Subtype c~ ca cp 
locator 
collector 
sequencer 
director 
replicator 

O(N)  O(N)  O(N)  
o(1) O(log N) O(log 
O(1) O(1) O(log N) 
0(1)  0(1)  0(1)  
0 0 0 

The above definitions also define the chain of type inclusions 

replicator C director C sequencer C collector C locator, 

which is a linear order on types. 

D e f i n i t i o n 5 .  The access type of a multidimensional object is the Cartesian 
product of per-axis types. 

The type inclusion relation between multidimensional access types is one of 
part ial  order: a subtype has to be junior in all dimensions of a supertype. Objects 
of different ranks have incommensurable access types. All access types with a 
common rank form a lattice. 

4 D a t a - p a r a l l e l  s k e l e t o n s  

In the f ramework of the skeleton approach[Col89], the DP operators can be 
regarded as instances of a few high-order functions that  depend on functional 
parameters  or introduce appropriate  data  structures. We shall consider some 
of them below. Since we need to use product types as well as array types in 
type signatures, it is impor tan t  that  we use some unambiguous notation. We 
shall denote as rx the type of an array which has rank r and el-type x. When 
a superscript follows a type variable, as in x ~, this should be interpreted as a 
product  type, i.e. the type of all n-tuples of objects of type x. When we use 



747 

both preceding and succeeding superscripts, an ambiguity may result as that  
can be interpreted either as an array of tuples or a tuple of arrays. In all such 
cases we shall bracket the type expression explicitly. Finally, wherever the access 
component of type has to be specified, we shall use a preceding subscript, so s~t 
denotes the type of any 2d array with el-type t whose access types in the first 
and second dimensions are s and 1, respectively. Note that sl in this example is, 
in fact, the Cartesian product of per-axis types (see def. 5), which makes it legal 
to use power as well, e.g. c 3 = e c c .  

We have fully defined 4 skeletons for DP computing: Map, duxtapose, Select 
and Concatenate. In this brief overview we shall not, for lack of space, describe 
all of them, but only the most interesting ones: Map and Select. 

5 M a p  

This is the fundamental skeleton of DP computing. It applies a pure function to 
an array element-wise and has the following type signature: 

(Vr > 0, a, b) (~ -~ %) -~ ra ~ rb, 

which introduces overloading in rank. For any function f, Map f is indifferent 
to the access type of the argument: the access part of the signature is therefore 
fully decoupled from the rest and is given by 

where 1 is the locator access type and 0 is the access type of a scalar. 
A generic Map skeleton must also allow the function argument to accept 

arrays of any rank not exceeding the rank of the second argument of the Map. 
Therefore there has to be a family of skeletons {Map,~} parametrised with an 
orientation mask m, with the following signature: 

Now let us define the (still disjoint) access type signature of Mapm: 

where the bar above m is the standard denotation of bit compliment, and the 
hat over the mask denotes the projection operator defined earlier. Note that  the 
first argument, a function returning a scalar, is antimonotonic in the access type 
of its argument. 

The functional argument (call it functional parameter to avoid confusion) 
can be any function taking an object of rank ram into an object of rank 0 (the 
latter guarantees non-nesting). However, three important  cases below structure 
the functional parameter further, down to the level of scalar user-defined func- 
tions, which can be regarded as parameter-operators, and hence be treated al- 
gebraically. 
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Computation. This is a ease of applying the functional parameter to the non- 
scalar argument to compute a new array. If the rank of the functional parameter 
argument is 0 then it defines an ordinary unary operator, such as ( - ) ;  if the 
rank is 1 or higher, the meaning of the Map is one of a reduction. Define three 
subskeletons: 

Fz :  (Va, b)~ -+ b ~ a) --~ ~ --+ Ib --+ Oa, 

r ~ : (Va)~  -+  a -+  a) - ~  % -+  ~a -+  ~  

r ~ :  (Va, ~ )~  ~ a --~ ~) - ~  ~  - ~ a  -~  ~  

The reader familiar with high-order functions will easily recognise the foldz 
type signature of ./-s which has the meaning of a reduction with any associative 
(but not necessarily commutative) operator typed a --+ b -+ a and its idem;ity 
value typed a. Due to noncommutativity,  the access signature requires type 
sequencer for the last argument. If the reduction operator is commutative as 
well, F r should be used instead, generally with an increase in parallelism./~r is 
polymorphic in the rank of the last argument as its semantics is not sensitive to 
the array structure (it uses the array argument as a bag). 

Selection. This is a case of using the nonscMar argument of Map to provide 
some location information that  the functionM parameter  can use to select a 
specific element from another array: such a function can always be represented as 
Ax. (~  S f (x) ) ,  with some numerical function f ,  some array S and the constant 

being the element selection function which returns the element of its first 
argument selected using the second argument as index tuple. Unfortunately such 
a selection primitive turns out to be insensitive to the access type of its argument 
and so a separate primitive is required which is not based on an instance of Map.  

6 S e l e c t  

There are two reasons for treating selections separately from the Map  skeleton. 
Firstly, as was mentioned in section 5, they should be sensitive to the access type 
of the array source. Secondly, a more complex subtyping structure is required for 
the nonsealar index argument, which combines the Mready encountered transla- 
tional with yet another, afflne, symmetry, which occurs in integer objects. 

The  type signature of the Select skeleton is as follows: 

Sel :: (Vr, d,x)~x ~ (dr)" ~ dx,  

where dI is some rank-d index type defined below, which we shall assume to be 
a subtype of dint. (Remember the notation t ~ is used for the nth power of type 
t in the Cartesian product  sense, i.e. the type of n-tuples of type-x components.) 
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7 A f t i n e  i n t e g e r  t y p e  

In this section we shall use the translational symmet ry  notat ion introduced in 
the end of section 2. 

D e f i n i t i o n 6 .  The purely affine type dA is the type of all d-dimensional, integer 
arrays v whose elements satisfy the following formula 

d 

vili2...i~ = E a[k]ik + b 
k = l  

with some integer a ['~] and b. (We enclose the superscript in square brackets to 
avoid any confusion with Cartesian powers of types) 

An array may  not have a purely a n n e  type, with some of the dimensions 
still being purely anne .  The most general case is described by the following 
expression: 

r ~  

k = l  

where p = ~ j ,  i~ = {mj}k, for some mask m, and all the coefficients are of the 
same rank Orn = Irnl - n. 

D e f i n i t i o n T .  The index type 8I is a type of a d-dimensional, integer array all 
elemenls of which satisfy the above formula with some mask rn, [m I = d and 
rank-l coefficients (where l = Ore) a [~] and b. The general index type is fully 
defined by two Boolean masks: 

which indicates by l 's  which dimensions have translational symmetry, and ~ = 
-~, showing which dimensions have affine symmetry. 

The data  constructor Y for the general index type is parametrised with the 
mask oz and accepts as the argument an (l + l)- tuple (where 1 = rna) of a n n e  
form coefficients of equal rank: Yc~[a[ 1] : el,a [2] : c z , . . . ,  a Ill : el,hi, where the 
integer scalars el ..ez define the dimensions of the result along the a n n e  axes. 

Now we are well-equipped to define affine subtyping on type mint. For a single 
dimension the type inclusion relation is as follows: ts C as C us, where "ts" 
stands for translational symmetry,  "as" for a n n e  symmet ry  and "us" for no 
symmetry .  As before, a multidimensional subtype must be junior or equal to a 
supertype in all dimensions. We exemplify the type lattice in fig 2, where the 
case d = 2 is displayed. 

The access type of an axis of aNne symmet ry  is replicator. The implementa-  
tion may  choose to introduce "smart'! upgrading coercions from the replicator 
type, which modify the way the coercee is produced rather than moving it about  
when the production is completed. 
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Fig. 2 .2d  attlne type classification. 

7.1 S e l  s k e l e t o n  

This  function takes as many  other arguments as the rank of the first one, the 
source. The reason they are not juxtaposed in the sense of the general DP 
paradigm,  see [MS96] is because we do not wish to coerce the nonscatar index 
tuple to a single affine type, which would cause a loss of type information and 
therefore an excessive generMisation. Nevertheless, as far as the result contents 
are concerned, these can be defined element-wise as follows: 

( s d  z Xo . . .  k = (M p (ZZ) [[Xo, k 

for any valid multi- index k. 1 
However, function Sel, unlike Map,  can use the information about  affine 

symmetr ies  of the indices as well as the source argument  access type to choose 
the most  efficient particular selection. This is achieved by overloading Sel for 
any combinat ion of T and ~ of each index argument.  

The access type requirements for the source of the Sel function are very easy 
to establish. Indeed, if the index corresponding to an axis of the source has an 
affine dimension, the axis type can be as high as sequencer. Otherwise the source 
axis is required to be a director. Sel is obviously polymorphic in the access type 
of all indices. How is the access type of the result defined? Denote as {w~.} the 
access type tuple of [IX0, X I , . . . ,  X,.]]. For any k, consider the following cases: 

1. w~ is senior to type replicator. The respective result axis has the same type 
and alignment.  

2. w~ is of type replicator. If  the kth axis of each of the X 0 , X 1 , . . . , X ~  is 
t ranslat ionally symmetr ic ,  so is the result axis, and it has the same type 
and alignment. Else if all but one axis are such, with the remaining axis of  
an Xm being anne ,  then the result axis is Migned with the ruth axis of the 
source. Otherwise, same as case 1. 

1 This is not how Sel should be implemented, see section 5; we only use ~ to define 
the value of the elements of the result 
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ttow does Sel act on an affine integer object as the source? If r/~ and ~] are 
the parameters of the atIine symmetry of the source, r[ and a~ the respective 

parameters of the result, and r[ ~] and al ~] of the kth index object, 

d 

k = l  

d 

= A (4 
k=l 

It should be noted that the power of Sel surpasses all known non-nested DP 
selections so that they can be expressed via it straight away. For example~ a 
SLICE of a vector V is given by Set V(TI[k  : l,m]), where m is the start, k is 
the increment, and I is the new horizontal dimension and the transposition of a 
matrix R can be encoded as 

Sel R (T10[[111 : dim2(R), [1]0])(T01[[1]I : diml(R), [1]0]), 

which clearly shows the ld-affine, ld-translational symmetry of the operation. 
(dimk stands for the kth component of the object shape). 

8 C o n c l u s i o n s  

A type system based on analysis of symmetries inherent in distributed DP com- 
puting has been introduced and the fundamental DP skeletons have been typed 
accordingly. Programming with those could be free from ItPF style annotation 
while conveying similar information to the compiler. 
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