Abstract
The paper summarizes the main concepts and paradigms of category theory and explores some of their applications to the area of algebraic specifications.
In detail we discuss different approaches to an abstract theory of specification logics. Further we present a uniform framework for developing particular specification logics. We make use of ‘classifying categories’, to present categories of algebras as functor categories and to obtain necessary basic results for particular specification logics in a uniform manner. The specification logics considered are: equational logic for total algebras, conditional equational logic for partial algebras, and rewrite logic for concurrent systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Abramsky. Interaction categories (extended abstract). In J.L. Burn, S.J. Gay, and M.D. Ryan, editors, Theory and Formal Methods 1993: Proc. First Imperial College Department of Computing Workshop on Theory and Formal Methods, pages 57–70. Springer Verlag Workshops in Computer Science, 1993.
S. Abramsky. Interaction categories and communicating sequential processes. In A.W. Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R.Hoare. Prentice Hall International, 1994.
M. Barr and C. Wells. Toposes, triples, and theories. Springer Verlag, 1985.
M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1990.
I. Claßen, M. Große-Rhode, and U. Wolter. Categorical concepts for parameterized partial specifications. Math. Struct. in Comp. Science, 5(2):153–188, 1995.
M. Cerioli and J. Meseguer. May I Borrow Your Logic? Technical report, SRI International, Menlo Park, 1993.
H. Ehrig and M. Große-Rhode. Functorial theory of parameterized specifications in a general specification framework. TCS, (135):221–266, 1994.
H. Ehrig. Algebraic specification of modules and modular software systems within the framework of specification logics. Technical Report 89-17, TU Berlin, 1989.
S. Eilenberg and S. MacLane. General theory of natural equivalences. Trans. Am. Math. Soc., 58:231–294, 1945.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1985.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, volume 21 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1990.
H. Ehrig and B. Mahr. A decade of TAPSOFT: Aspects of progress and prospects in theory and practice of software development. In Proc. TAP-SOFT'95, pages 3–24. LNCS 915, 1995.
P. Freyd. Aspects of topoi. Bull. Austr. Math. Soc., (7):1–72, 1972.
P. Freyd. Aspects of topoi, corrections. Bull. Austr. Math. Soc., (8):467–480, 1973.
J. Fiadeiro and A. Sernadas. Structuring theories on consequence. In D. Sannella and A. Tarlecki, editors, Recent Trend in Data Type Specification, LNCS 332, pages 221–235. Springer Verlag, 1987.
J. A. Goguen and R. M. Burstall. Introducing institutions. In Proc. Logics of Programming Workshop, LNCS 164, pages 221–256. Carnegie-Mellon, Springer, 1984.
J. Goguen and R.M. Burstall. Institutions: Abstract model theory for computer science. Technical Report CSLI-85-30, Stanford University, 1985.
J. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the ACM, 39(1):95–146, 1992.
J. Goguen. A categorical manifesto. Mathematical Structures in Computer Science, 1(1):49–67, 1991.
J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specification, correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in Programming Methodology IV: Data Structuring, pages 80–144. Prentice Hall, 1978.
J. M. E. Hyland and A. M. Pitts. The theory of constructions: Categorical semantics and topos-theoretic models. In Categories in Computer Science and Logic, pages 137–200. AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado, Boulder, 1989.
P. T. Johnstone. Topos Theory. Academic Press, 1977.
G. M. Kelly. Review of the elements of 2-categories. Lecture Notes in Mathematics, (420):74–103, 1974.
H. Kaphengst and H. Reichel. Operative Theorien und Kategorien von operativen Systemen. In Studien zur Algebra und ihren Anwendungen, volume 16, pages 41–56. Akademie-Verlag, 1972.
A. Kock and G. E. Reyes. Doctrines in categorical logic. In J. Barwise, editor, Handbook of Mathematical Logic, pages 283–313. Elsevier Science Publishers B. V., North Holland, 1977.
F. W. Lawvere. Functorial semantics of algebraic theories. In Proc. National Academy of Science, U.S.A., 50, pages 869–872. Columbia University, 1963.
J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge University Press, 1986.
S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer, New York, 1971.
E. Manes. Algebraic Theories. Springer Verlag, 1976.
J. Meseguer. General logics. In H.-D. Ebbinghaus et. al., editor, Logic colloquium '87, pages 275–329. Elsevier Science Publishers B. V.,North Holland, 1989.
J. Meseguer. Rewriting as a unified model of concurrency. Technical Report SRI-CSL-90-02, SRI International, Computer Science Laboratory, 1990.
J. Meseguer. Conditional rewriting logic as a unified model of concurrency. TCS, 96:73–155, 1992.
J. Meseguer and J. A. Goguen. Initiality, induction, and computability. In M. Nivat and J. Reynolds, editors, Algebraic Methods in Semantics, chapter 14, pages 459–541. Cambridge University Press, 1985.
A. Poigné. Algebra categorically. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard, editors, Category Theory and Computer Programming, pages 77–102. LNCS 240, Springer, 1985.
H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press, Oxford, 1987.
R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical Proceedings Cambridge Philosophical Society, (95):33–48, 1984.
R. A. G. Seely. Categorical semantics for higher order polymorphic lambda calculus. Journal of Symbolic Logic, 52(4):969–989, December 1987.
A. Tarlecki. Moving between logical systems. In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type Specifications. WADT11. Oslo Norway, September 1995. LNCS (this volume), Springer, 1996.
W. Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ehrig, H., Große-Rhode, M., Wolter, U. (1996). On the role of category theory in the area of algebraic specifications. In: Haveraaen, M., Owe, O., Dahl, OJ. (eds) Recent Trends in Data Type Specification. ADT COMPASS 1995 1995. Lecture Notes in Computer Science, vol 1130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61629-2_34
Download citation
DOI: https://doi.org/10.1007/3-540-61629-2_34
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61629-0
Online ISBN: 978-3-540-70642-7
eBook Packages: Springer Book Archive