Skip to main content

Stochastic methods for transistor size optimization of CMOS VLSI circuits

  • Applications of Evolutionary Computation Evolutionary Computation in Electrical, Electronics, and Communications Engineering
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

The performance of a CMOS circuit depends heavily on its transistor sizes. We have tested a standard optimizer, a Monte Carlo scheme and a method based on Genetic Algorithms combined with very accurate SPICE simulations to automatically optimize transistor sizes of three different digital CMOS circuits. While the standard optimizer and the Monte Carlo scheme are advantageous for small circuits, the method based on Genetic Algorithms was found to be more stable for larger circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas Bäck. GENEsYs, 1992. Computer Science Department, LSXI, University of Dortmund, Baroper Str. 301, D-4600 Dortmund 50, Germany.

    Google Scholar 

  2. Thomas Bäck. Evolutionary Algorithms in Theory and Practice. PhD thesis, Fachbereich Informatik, Universität Dortmund, 1994.

    Google Scholar 

  3. L. S. Heusler. Transistor Sizing for Timing Optimization of Combinational Digital CMOS Circuits. PhD thesis, ETH Zürich, 1990.

    Google Scholar 

  4. A. M. Hill and S-M. Kang. Genetic Algorithm Based Design Optimization of CMOS VLSI Circuits. In Proceedings of the Third International Conference on Parallel Problem Solving from Nature — PPSN III, pages 546–555, October 1994.

    Google Scholar 

  5. HSPICE — Circuit Simulator, Metasoft.

    Google Scholar 

  6. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm. Evolutionary Computation, 1(1), 1993.

    Google Scholar 

  7. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm. Evolutionary Computation, 1(4), 1993.

    Google Scholar 

  8. R. Rogenmoser and Q. Huang. A 375 MHz 1-Μm CMOS 8-Bit Multiplier. In Proceedings of the 1995 Symposium on VLSI Circuits, pages 13–14, June 1995.

    Google Scholar 

  9. R. Rogenmoser and Q. Huang. An 800-MHz 1-Μm CMOS Pipelined 8-bit Adder using True Single-Phase Clocked Logic-Flip-Flops. IEEE Journal of Solid-State Circuits, 31(3):401–409, March 1996.

    Article  Google Scholar 

  10. C. T. Sah. Characteristics of the Metal-Oxide-Semiconductor Transistors. IEEE Transactions on Electron Devices, ED-11:324–345, July 1964.

    Google Scholar 

  11. H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.

    Google Scholar 

  12. Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 2–9, San Mateo, CA, 1989. Morgan Kaufmann Publishers.

    Google Scholar 

  13. Darrell Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 116–121, San Mateo, CA, 1989. Morgan Kaufmann Publishers.

    Google Scholar 

  14. L. T. Wurtz. An Efficient Scaling Procedure for Domino CMOS Logic. IEEE Journal of Solid-State Circuits, 28(9):979–982, September 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rogenmoser, R., Kaeslin, H., Blickle, T. (1996). Stochastic methods for transistor size optimization of CMOS VLSI circuits. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1048

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_1048

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics