Skip to main content

A survey of intron research in genetics

  • Basic Concepts of Evolutionary Computation
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

A brief survey of biological research on non-coding DNA is presented here. There has been growing interest in the effects of non-coding segments in evolutionary algorithms (EAs). To better understand and conduct research on non-coding segments and EAs, it is important to understand the biological background of such work. This paper begins with a review of basic genetics and terminology, describes the different types of non-coding DNA, and then surveys recent intron research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. I. Bell and T. G. Marr, editors. Computers and DNA. Addison-Wesley, 1988.

    Google Scholar 

  2. C. C. F. Blake. Do genes-in-pieces imply proteins-in-pieces? Nature, 273:267, 1978.

    Google Scholar 

  3. T. Cavalier-Smith. Intron phylogeny: a new hypothesis. Trends in Genetics, 7(5):145–148, May 1991.

    PubMed  Google Scholar 

  4. H. Curtis. Biology. Worth Publishers, 1983.

    Google Scholar 

  5. W. F. Doolittle. Genes in pieces: were they ever together? Nature, 272:581, 1978.

    PubMed  Google Scholar 

  6. W. F. Doolittle. What introns have to tell us: Hierarchy in genome evolution. Cold Spring Harbor Symposia on Quantitative Biology, 52:907–913, 1987.

    PubMed  Google Scholar 

  7. A. Flavell. Introns continue to amaze. Nature, 316:574–575, August 1985.

    Article  PubMed  Google Scholar 

  8. S. Forrest and M. Mitchell. Relative building-block fitness and the building-block hypothesis. In FOGA, 1992.

    Google Scholar 

  9. W. Gilbert. Why genes in pieces? Nature, 271:501, February 1978.

    Article  PubMed  Google Scholar 

  10. W. Gilbert. Genes-in-pieces revisited. Science, 228:823–824, May 1985.

    PubMed  Google Scholar 

  11. W. Gilbert. The RNA world. Nature, 319:618, February 1986.

    Google Scholar 

  12. W. Gilbert. The exon theory of genes. Cold Spring Harbor Symposia on Quantitative Biology, 52:901–905, 1987.

    PubMed  Google Scholar 

  13. W. Gilbert. Gene structure and evolutionary theory. In New perspectives on evolution, pages 155–163. Wiley-Liss, 1991.

    Google Scholar 

  14. W. Gilbert and M. Glynias. On the ancient nature of introns. Gene, 135, 1993.

    Google Scholar 

  15. W. Gilbert, M. Marchionni, and G. McKnight. On the antiquity of introns. Cell, 46:151–153, July 1986.

    Article  PubMed  Google Scholar 

  16. M. Go. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature, 291:90–92, May 1981.

    Article  PubMed  Google Scholar 

  17. D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3:493–530, 1989.

    MathSciNet  Google Scholar 

  18. D. L. Hartl. New perspectives on the molecular evolution of genes and genomes. In New perspectives on evolution, pages 123–137. Wiley-Liss, 1991.

    Google Scholar 

  19. T. Haynes. Duplication of coding segments in genetic programming. In 13th AAAI, 1996.

    Google Scholar 

  20. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

    Google Scholar 

  21. J. R. Levenick. Inserting introns improves genetic algorithm success rate: Taking a cue from biology. In ICGA-4, pages 123–127, 1991.

    Google Scholar 

  22. B. Lewin. Genes 5. John Wiley & Sons, 1994.

    Google Scholar 

  23. R. K. Lindsay and A. S. Wu. Testing the robustness of the genetic algorithm on the floating building block representation. In 13th AAAI, 1996.

    Google Scholar 

  24. M. Long, C. Rosenberg, and W. Gilbert. Intron phase correlations and the evolution of the intron/exon structure of genes, 1995. Under review.

    Google Scholar 

  25. M. Marchionni and W. Gilbert. The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell, 46:133–141, July 1986.

    Article  PubMed  Google Scholar 

  26. N. F. McPhee and J. D. Miller. Accurate replication in genetic programming. In ICGA-6, 1995.

    Google Scholar 

  27. M. Nei. Molecular Evolutionary Genetics. Columbia University Press, 1987.

    Google Scholar 

  28. P. Nordin and W. Banzhaf. Complexity compression and evolution. In ICGA-6, 1995.

    Google Scholar 

  29. P. Nordin and W. Banzhaf. Evolving turing-complete programs for a register machine with self modifying code. In ICGA-6, 1995.

    Google Scholar 

  30. P. Nordin, F. Francone, and W. Banzhaf. Explicitly defined introns and destructive crossover in genetic programming. Workshop on GP, ML, 1995.

    Google Scholar 

  31. B. Patrusky. The intron story. MOSAIC, 23(3):22–33, Fall 1992.

    Google Scholar 

  32. M. Robertson. The post-RNA world. Nature, 335:16–18, September 1988.

    Article  PubMed  Google Scholar 

  33. J. H. Rogers. How were introns inserted into nuclear genes? Trends in Genetics, 5(7):213–216, July 1989.

    Article  PubMed  Google Scholar 

  34. A. Stoltzfus, D. F. Spencer, M. Zuker, J. M. Logsdon, Jr., and W. F. Doolittle. Testing the exon theory of genes: the evidence from protein structure. Science, 265:202–207, July 1994.

    PubMed  Google Scholar 

  35. R. A. Wallace, G. Sanders, and R. Ferl. Biology: The Science of Life. Harper College, 3rd edition, 1991.

    Google Scholar 

  36. J. D. Watson. Molecular Biology of the Gene. W. A. Benjamin, 2nd edition, 1970.

    Google Scholar 

  37. A. S. Wu. Non-coding DNA and floating building blocks for the genetic algorithm. PhD thesis, University of Michigan, 1995.

    Google Scholar 

  38. A. S. Wu and R. K. Lindsay. A comparison of the fixed and floating building block representation in the genetic algorithm, 1995. Submitted to Evol. Comp.

    Google Scholar 

  39. A. S. Wu and R. K. Lindsay. Empirical studies of the genetic algorithm with non-coding segments. Evolutionary Computation, 3(2), 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, A.S., Lindsay, R.K. (1996). A survey of intron research in genetics. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_974

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_974

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics