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A b s t r a c t .  The so-called "aggregation problem" is addressed, where the 
issue is how to release only a limited part of an information resource, and 
foil any attacks by users trying to aggregate information beyond the pre- 
set limits. The framework is that of relational databases, where sensitive 
information can be defined flexibly using view definitions. For each such 
view, the tuples that have already been disclosed are recorded in tension- 
ally rather than extensionally; that is, at each point, sub-view definitions 
are maintained that describe all the sensitive tuples that have been re- 
leased to each individual. While our previous work foiled sequences of 
single-query attacks attempted by individual users, it did not consider 
multi-query attacks, where a combination of queries is used to invade the 
sensitive information. In this study we enhance our previous solutions to 
guard the sensitive information against two kinds of multi-query attacks: 
join attacks, and complement attacks.: We then argue that the enhanced 
algorithm renders the sensitive information immune to attacks. 

1 Introduction 

In has been observed~ that  often the release of a l imited par t  of an information 
resource poses no security risk, but  the release of a sufficient par t  of  tha t  re- 
source might  pose such risks. This problem of controlled disclosure of  sensitive 
information is known as the aggregation problem. In [10] we argued tha t  it is pos- 
sible to art iculate the specific sensitive concepts within a da tabase  tha t  should 
be protected against over-disclosure, and we provided an accounting sys tem to 
enforce such controlled disclosure. Our methods foil any a t t e m p t  to a t tack  these 
predefined secrets either by disguising queries or by surrepti t iously accumulat -  
ing tuples. The accounting methods that  we developed to thwart  such a t t emp t s  
were shown to be both accurate and economical. 

Our previous work tracked continuously the queries a t t empted  by each in- 
dividual user, but  it assumed that  each "at tack" consisted of a single query 
at  a t ime; tha t  is, it did not consider attacks through combinat ions of several 
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queries. In this study we enhance our previous solutions to guard the .~ensilive 
concepts against two kinds of multi-query attacks: (1) join attacks, in which two 
queries targeting narrower (and therefore unprotected) associations of attributes 
are joined, to create larger associations that are supposed to be protected: and 
(2) complement attacks, in which a query targeting a larger set of tuples (which 
embeds the protected tuples, but is itself unprotected) is combined with a query 
on the unprotected tuples within the larger set (which is unprotected), to derive 
tuples in the protected set. In addition, we show that the enhanced algorithm 
prevents any kind of attack on sensitive concepts. 

Section 2 summarizes these concepts and methods as developed in [l 0]. Sec- 
tion 3 describes the multi-query attack strategies, Section 4 shows how these 
attacks can be foiled, and Section 5 argues that the enhanced algorithm pro- 
vides concepts with immunity to attacks. Section 6 considers several related 
considerations, and Section 7 discusses further research problems. 

1.1 R e l a t e d  Work  

Related work was discussed in [10] and has not changed significantly in the in- 
terim. Major studies of interest include [11, 4, 7, 6, 5]. Many of the previous 
studies suggest terminology and reason from examples to derive specific solu- 
tions for specific problems. Recent work on the problem has been meager, with 
an occasional reference in the more general context of inference problems. For 
example, Campbell [2] notes that aggregation is a "big security problenf' but. 
offers no references to detailed studies, only to approaches that work in some 
cases. Of course, many of the techr/iqu~/s, used in this study have been developed 
previously for use on other problems. These efforts are noted as appropriate. 

Similar problems occur for statistical databases (SDB). In statistical data- 
bases users can retrieve various characterizations (such as salaries), but not iden- 
tities (such as people or institutions). The work of [1] and [9] provide e• 
overviews of statistical database security problems. None of the SDB techniques 
assume that.the data is kept in a relational databases, rather the problems are 
couched in terms of simple tables. Common techniques for controlling disclosure 
include linear programming and answer size restrictions. Little research has been 
clone on auditing or query sequence control as is addressed here. If the holders 
of statistical data, such as census bureaus, wish to make data more widely avail- 
able through on-line access to relational databases, variations of the techniques 
presented here may have applicability, 

Our approach allows a flexible (view-based) definition of the sensitive infor- 
mation, but develops an accurate method for accounting access to such views. 
The main contribution of [10] was a method to articulate specific sensitive con- 
cepts and to account for individual user access to these sensitive concepts. The 
main contributions of this study is to control alternative ways of determining 
tuples in these sensitive concepts. 

We choose views as our mechanism for articulating more specific sensit'ive 
concepts. This was previously proposed by Denning et al. [3] as an access control 
mechanism, but this is the first application of the technique to the aggregation 
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problem. As queries are also views, we can then check each query to see if it 
intersects a sensitive view. This intersection is also a view; in fact, it. is a sub- 
view of both the sensitive concept and the query. By maintaining a "history" 
of these sub-views of the sensitive views and their sizes, we know how many, 
and which, tuples of each sensitive concept have been accessed. This eliminates 
the need to maintain a history of the sensitive tuples themselves tha t  have been 
accessed. The technique integrates the accounting and naming mechanisms of 
secrets, resulting in an efficient and complete system for tracking access. 

1.2 P h o n e b o o k  E x a m p l e  

The Secret Government  Agency (SGA) Phonebook is a common example of 
the aggregation problem. In this example, the entire phonebook is a classified 
document  and is not available without the appropriate clearance; yet, indhddual 
phonebook entries are available to inquiring callers. A simple example of such a 
phonebook, with scheme Emp = (Name, Tel, Div, Mail, Bldg, Room.) is shown 
in Figure 1. The  reason that  the entire phonebook is classified is because a 
phonebook provides a way of grouping the individuals into concepts. In relational 
database systems tuples are associated together by means of views, so each view 
may be regarded as a concept. 

Name Tei" Div Mail ]Bldg[Room 
A. Long x3333 A m505~ 2 ] 307 [ 

! 

P. Smith x l l l l  B m303 2 [ 610 
E. Brown x2345 B m1011 1 [ 455 
C. Jones :x1234 A m2021 I [ 307 

i 

M. Johnson x1234 A ml01 i 3 ] 103 
B. Stevenson ix2222 A m202 1 [ 305 
S~ Quinn lx2222 C m6061 3 ] I01 
R. Helmick ix1234 A m404! I ] 307 
A. Facey xI122 C m505! 2 ] 400 
S. Sheets ix2345 B m1011 1 I 455 ! 

Fig. I. The Phonebook example 

2 The  Mode l  

2.1 B a s i c  A s s u m p t i o n s  

The model is most ly unchanged from [10], and we repeat here the assumptions 
and features tha t  are relevant to this paper. We assume that  the sensitive infor- 
mat ion is a relatively small portion of a relational database. We adopt  the usual 
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definition of relational databases~ but restrict our attention to databases that are 
single relations, each with a simple key, and to projection-selection views, where 
all selections are conjunctions of simple clauses of the form attribute = value. We 
denote the database scheme R = ( A t , . . . ,  An). The domain Di of an attribute 
Ai is the projection of the given instance of R on this attribute. This so-called 
active domain is the finite set of values used for Ai in the database instance. All 
tuples t = (tl, t2 , . . . ,  tn) are therefore elements of the set D1 x D_~,-.-, x Dn. 

We will define both sensitive information and queries in terms of such selec- 
tion-projection views. More comprehensive views may be formed by taking com- 
plements and unions of views. Databases consisting of several relations may be 
treated view the Universal Relation formalism [12]. The limitation of selection 
clauses to the form attribute = value is fairly serious, as it prohibits clallses of 
the form attribute < value. While such views may be handled by decomposing 
them into a set of attribute = value views, handling such views satisfactorily is 
a topic for future research. 

2.2 Queries and  Concepts  

A query is a view. Its extension in the present database instance is the an. 
swer to the query. Queries are defined by users and describe the information 
they are seeking. A concept is also a view. Concepts are defined in tile system 
and describe the information that needs to be protected. Views (queries or con- 
cepts) may be syntactically different, but yet describe the same information. 
Consider the example database :scheme Emp = (Name, Tel, Div, Mail. Bid 9. 
Room) and the views select Name, Room where  Room=t03 and select Name 
where  Room=103. Both view definitions are identical, except that the latter 
view does not project a selection attribute which is projected by the former 
(ROom). Nevertheless, because the values of selection attributes are known (in 
this case, the constant value 103), there is no difference in the information these 
views describe. Consequently, regardless of their syntax, we shall treat all views 
as is their projection attributes include all their selection attributes. 

2.3 Concept Disclosure 

Let U and V be views of database scheme R. U overlaps V, if their selection 
conditions are not contradictory, 1 and U's projection attributes contain V's 
projection attributes. When U overlaps V, then the extension of U could be 
processed by another view that will remove the extra attributes. Some of the 
resulting tuples may be in the extension of V. 

Assume that U overlaps V. The restriction of V to U, denoted V [ U, is 
the view obtained from V by appending to its selection condition the selection 
condition of U. The exclusion of U from V, denoted V ] -,U, is the view obtained 

i The selection conditions of U and V are contradictory, if U's selection condition 
includes the clause Ai = a and V's ~lection condition includes the clause .4~ = b, 
for some attribute Ai and two different constants a and b. 
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from V by appending to its selection condition the negation of the selection 
condition of Ufl Obviously, V = (Y t U) U (V ] --,U). 

Let C be a concept view and let Q be a query view. Q discloses C, if Q 
overlaps C. Intuitively, a query discloses a concept, if its result could be processed 
by another query, to possibly derive tuples from the protected concept. The 
disclosure relationship between a query and a concept is illustrated schematically 
in Figure 2. 

As an example, with the previous database scheme, consider this concept 

C -= WName,Div,RoornO'(Roorn=lO3)h(Div=B) 
(names of those in division B and in room 103) 

and these three queries 

1. Q1 = 7~Name,Tel,Div,RoornO'(Room=lO3)A(Div=B)A(Tel=x2345) 
(names of those in room 103, in division B, and with telephone x2345) 

2. Q? = 7rNarne,Div,Jloom~YDiv=B 
(names and rooms of those in division B) 

3. Q3 = lrName,Div,ttoon~O'Roorn=102 
(names and divisions of those in room 102) 

Qx discloses C, because applying the query 7VName,D~v,Roorn to the result, of Qt 
may yield some tuples in C. Q2 discloses C in its entirety, because applying 
the query Crnoo,~=lo3 to the result of Q~ yields all the tuples of C. Q3 does not 
disclose ~ny tuples of C because their selection conditions are contradictory. 

Notice that a concept protects its tuples, but not its sub-tuples; i.e., a query 
on a subset of the concept's projection attributes does not disclose the concept. 
On the other hand, a query on a superset of the attributes would disclose the 
concept (unless their selection conditions are contradictory). 

As mentioned earlier, disclosure control requires that the number of tuples 
disclosed from a given concept does not exceed a certain predetermined number. 
For each concept C we define three integer values called concept total, concept 
threshold and concept counter, and denoted respectively, N, T and D. N de- 
notes the total number of tuples in the extension of this concept, T denotes the 
maximal number of tuples that may be disclosed from this concept, and D de- 
notes the number of tuptes from this concept that have already been disclosed. 
If T > N, then the concept is unrestricted; we shall assume that none of the 
concepts are unrestricted. As queries are processed, the database system must 
keep track of D to ensure that D < T. The number of tuples in the extension of 
a view V will be denoted ]tVII; e.g., tlC[[ = g .  

[I0] described a quick method that determines whether Q discloses C, and 
then defines the precise sub-view of C that is disclosed by Q. This method was at 
the basis of several algorithms for controlling the disclosure of sensitive concepts. 
The main feature of the solution is that tuples that have already been disclosed 
are recorded intensionatly rather than extensionaUy; that is, at each point, view 
definitions are maintained that describe all the concept tuples that have released 
to each individual. 

2 Note that the resulting selection condition is no longer a simple conjunction. 
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p ~ y  concept 

disclosed concept tuples 

tu_.u_ples retrieved b ue 

Fig. 2. Disclosure relationships between a query and a concept 

3 Attack Strategies 

As already noted, an essential principle behind these methods is that  a concept 
protects its tuples, but not its sub-tuples; i.e., a query on a subset of the concept's 
projection attributes is always allowed. The idea is that  concepts are designed to 
protect minimal associations of attributes; any lesser associations are assumed to 
be "harmless". This, however, leaves concepts vulnerable to attacks that  a t tempt  
to construct additional concept tuples from information that  is available freely. 

Recall that  a concept is a set of projection attributes a and a selection con- 
dition r (and a includes the attributes used in r The obvious w a y t 0  generate 
tuples over c~ tha t  satisfy r is to start  with "larger" views, where either the set 
of attributes contains a and/or  the condition does not contradict r and then 
use projection and/or  selection to generate concept tuples. However, such views 
are tracked by the algorithms described in [10]. 

The only other possibility is to generate concept tuples from views in which 
the set of attributes is strictly contained in a and/or  the condition contradicts 
r as such views are not controlled by these algorithms. 

Given the sensitive concept 

C = se lec t  a w h e r e  r 

two attacks are possible: 

1. J o i n .  In the join attack two queries are submitted: 

Q1 : se lect  a l  w h e r e  r 
Q2 = se lec t  a2 w h e r e  r 

where a l  U a 2  = a and a l  N a 2  contains a key to C, and r and r 
are conditions that  do not contradict r Both queries are allowed, because 
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the attribute sets a l  and a2 are not protected. Clearly, their natural join 
Q1 ~ Q2 yields tuples in C. 

2. C o m p l e m e n t .  In the complement attack two queries are submitted: 

Q1 = select al where  0 
Q~ = s e l e c t  c~ w h e r e  0 A -~r 

where 0 is a condition that is less restrictive than r and a '  is obtained from 
a, by removing the selection attributes that axe no longer necessary, because 
0 requires less attributes than r The former query is allowed because (~1 is 
not protected; the latter query is allowed because its condition contradicts 
r Clearly, their difference Q1 - Q 2  (the complement of Q~ within Q1) yields 
tuples in C. 

In both attacks, some additional information was used. In the first attack, 
it was knowledge of the database scheme and the key attribute. In the second 
attack, the condition -"4 would have to be expressed via specific values that 
"complement" the values used in ~b. In both cases, however, the system must 
assume that such knowledge might be available to the attacker. 

As an example, assume the sensitive concept 

select  Name where  Bldg=l and  Room=307 

The key to this concept is Name. 

1. Jo in .  Consider the queries 

Q1 = select  Name, Tel where  Bldg=l 
Q2 = select  Name, Tel where  Room=307 

Both would be allowed as neither contains the complete set of the con- 
cept's attributes (Name, Bldg, Room). Yet, their natural join "contains" the 
concept (appropriate selecting and projecting from this join wilt yield the 
concept in its entirety). 

2. C o m p l e m e n t .  Consider the queries 

Q1 : select  Name where  Bldg-:l 
Q~ = select  Name where  Bldg=l and  Room=305 
Qs = select  Name where  Bldg=l and  Room=455 

The first would be allowed because it does not contain the entire set of the 
concept's attributes, and the other two because their selection conditions are 
contradictory with that of the concept. Yet, the difference of the first and 
the union of the other two corresponds to the concept. 
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4 Guarding against Attacks 

The common element in both attacks was the lack of control over views that 
ask for a subset of the concept's attributes that contains the key attribute of 
the concept (Q1 and Q2 in the first attack, and Q1 in the second attack). By 
extending our control to such views, both kinds of attacks would be foiled. 

This extension implies a significant change to the semantics of a sensitive 
concept: a concept now protects also all its key projections. To implement the 
new semantics, we define a new view relationship. 

Let U and V be two views of database scheme R. U critically overlops V, 
if their selection conditions are not contradictory, and the intersection of their 
projection attributes contains a key of V. When U critically overlaps V, then the 
extension of U could be processed by a projection that removes the attributes 
in U but not in V, and possibly generate sub-tuples of tuples in the extension 
of V, that include its key attribute. The definitions of the restriction V I U and 
the exclusion V [ -~U remain unchanged. 

We now update the disclosure relationship between a query and a concept. 
Let C be a concept and let Q be a query. Q discloses C i fQ critically overlaps C. 
Intuitively, a query discloses a concept if its result could be processed by another 
query to possibly derive sub-tuples from the protected concept that include its 
key attribute. The new disclosure relationship between a query and a concept is 
illustrated schematically in Figure 3. 

tuples protected by concept 

disclosed 
concept 
sub- tuptes 

key attribute 

tuples retrieved by query 

Fig. 3. Disclosure relationships based on critical overlap 

By considering queries that target the key of a concept (i.e., critically over- 
lap the concept), as if they "fully" overlap the concept, attacks of the kind 
described above would be foiled. With this extended definition of disclosure, the 
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earlier disclosure control algorithms are still valid. Figure 4 reproduces such an 
algorithm. 

This algorithm associates with each concept C a predicate P that describes 
the concept tuples that have already been disclosed. P is initialized to true. 
Assume that Q1, . - . ,  Qp have already been processed when Qp+l is received, and 
let c~1,..., ap denote their respective selection conditions. The present value of P 
would be a l  V . . .  V ap. After computing the restriction of C to Qp+l (the tuples 
in this concept that are disclosed by this query), we exclude from it the view 
err (the tuples of this concept that have already been disclosed by the previous 
queries). The tuples in this new query are those that have not been delivered 
already. 

The input to this algorithm is a set C1,. �9 Crn of protected concepts, each 
with its associated predicate Pi and counters Ni, iF/ and D~, and the query Q 
whose selection predicate is ~. When it terminates, the value of permi t  indicates 
whether the answer to Q should be presented to the user or not. 

Algorithm (d~sclosure) 
permit := true 
materialize Q 
i :=O 
while permit and~ < m~ 
do 

i : = i + 1  
Mi :=0 
if Q critically overlaps Ci 
then 

M, := t{(C, } Q) 1 -~rp, ]l 
if Di + Mi >Ti 
then 

permit := false 
break 

endif  
endif 

done 
| f  permit 
then 

for i = 1, . . .m 
do 

Pi := Pi Va 
Di := Di + Mi 

done 
endif 

Fig. 4. Disclosure control algorithm that defeats join and complement attacks 
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It should be noted that key-containing sub-tuples are counted as if they were 
full tuples. That is, a query that overlaps a concept and a query that critical]y 
overlaps a concept incur the same "cost" to the user, against that concept. 
However, a user who, in two separate queries, extracts two sub-tuples of the 
same tuple, is only "charged" once! 

Note that a query that intersects only with the non-key attributes of a con- 
cept, is answered freely, as concepts protect only their key projections. The 
reason is that such queries cannot be used in any of the attacks described ear- 
lier. It should be noted, though, that it might be necessary to consider near keys 
(i.e., concept attributes whose active domains are nearly the size of the concept.) 
as if they were keys. 

As an example, consider the previous concept select  Name where  Btdg=l 
and  Room=307, and the join attack and complement attacks specified earlier. In 
the join attack, both Qt and Q~ critically overlap the concept, and their tuples 
will be accounted for. Similarly, in the complement attack, Q2 and Q3 will be 
delivered freely, as they do not critically overlap the concept (their selection 
conditions are contradictory to the concept's), but Q1, which critically overlaps 
the concept, will be accounted for. Altogether, these attempts no longer provide 
any additional opportunities. 

5 I m m u n i t y  to Attacks  

In this section we argue that the  algorithm presented in Section 4 provides sen- 
sitive concepts with immunity to attacks. 

Consider a set X of elements and a binary property p, where each x E X 
either has or does not have this property p, and assume that we are tasked with 
finding the subset Y of X of elements that have the property p. It is obvious 
that Y could be built in only two ways: 

1. Posi t ively:  by starting with Y = ~, and then examining every element of 
X and adding it to Y iff it has p. 

2. Negat ively:  by starting with Y = X, and then examining every element of 
X and removing it from Y iff it does not have p. 

Transferring this problem to relational databases, we assume a set of unique 
values, each such value is associated with a non-unique set of values, and an 
extra value that denotes whether the element has the property. Altogether, an 
element is now z = ( x l , . . . ,  xn), where zl provides the identity of the element 
(the key), xn denotes (e.g., using the values 1 and 0) whether the element has the 
property or not (the condition), and the other values constitute the description 
of the element. The task is now to isolate elements z = (xl . . . .  , Zn) such that 
X n = l .  

In accordance with the previous observation, these elements could be isolated 
in one of two ways: 
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1. Pos i t ive ly :  Y = e=,=l (X) 
2. Nega t ive ly :  Y = X - ~=.#1 (X) 

Note that the first X in the second formula does not use its xn values, and the 
method will still work even when this value is unknown. 

Assume now that we are tasked to prevent the retrieval of tuples of X that 
satisfy the condition. Then defeating these two methods of construction is guar- 
anteed to accomplish this task. 

Clearly, barring all tuples (x l , . . . ,  x~), unless they are certain not to satisfy 
the condition, will defeat both methods of construction, because when X contains 
only tuples that do not satisfy the condition, both formulas evaluate to the empty 
set. Thus, to populate the set Y, one needs to construct tuples (x l , . . . ,  x,)  that 
might satisfy the condition. 

Intuitively, to populate the set X in the first formula (the positive method) 
with tuples ( x l , . . . ,  xn) that might satisfy the condition, one may use (1) queries 
that specify all these attributes (and possibly others) and might satisfy the condi- 
tion; or (2) queries that specify fewer attributes and might satisfy the condition. 
Only the former kind of queries was controlled by the earlier model. The latter 
kind is the source for the join attack. The set X in the first term of the second 
formula (the negative method) can be populated in similar ways (though xn need 
not be retrieved). Once this term is populated, it is combined with the second 
term to form a complement attack. Hence the two new attack methods, the join 
and the complement. 

Yet, regardless of the specific method~ by b~rring access to any tuple that 
contains the key xl, unless it is certain not to satisfy the condition z , ,  it is clear 
that tuples (x l , . . . ,  xn) that might satisfy the condition would never become 
available (and Y will remain empty). Queries that contain tuples with the key 
and might satisfy the condition, were said to critically overlap the concept. This 
discussion is summarized in the following theorem. 

T h e o r e m .  Monitoring queries that critically overlap a concept provides com- 
plete protection to the concept. 

Of course, inference based on other knowledge may still be possible [8], but 
users will not be able to attack the concept by queries alone. 

6 Addi t iona l  Cons iderat ions  

6.1 Pa r t i a l  Answers  

All our disclosure algorithms behaved similarly, when the size of an answer to a 
disclosing query exceeds the allotment remaining on a particular concept: such a 
query is denied in its entirety. This approach maintains the completeness of the 
answers issued; that is, queries are either answered completely, or not answered 
at all. 

At times, it would seem preferable in such situations to deliver the remaining 
allotment, even if it does not answer the query completely. It should be empha- 
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sized that in abandoning completeness, we are violating a basic premise of query 
answering mechanism, by which all answers must be sound and complete. 3 

Modifying our disclosure algorithms to deliver partial answers is straightfor- 
ward, though a question that still remains is which tuples to deliver, and whether 
users should be notified when answers are incomplete. 

6.2 Disclosing K e y  P ro j ec t ions  

The enhancements of the controlled disclosure algorithm against attacks offered 
in Section 4 required new semantics for concepts: concepts protect all their key 
projections. At times, however, these semantics may be at odds with reality. In 
our example, consider the sensitive concept select Name where  Bldg=l a n d  
Room=307. To protect this concept, in every query that includes Name, the 
number of employees in room 307 of building 1 is noted, and the cumulative 
number is not allowed to exceed a predetermined threshold. However, this might 
prove impossible, if, for example, the institution needs to make public its entire 
list of employees in building 1; i.e., the concept select Name where  Bldg=l. In 
such a case, the concept becomes vulnerable to complement attacks, via a query 
on the names of employees in building 1, and queries on the names of employees 
in building 1 but in rooms other than 307. 

Hence, when a key projection of a concept cannot be protected, the concept 
remains vulnerable to complement attacks. Formally, assume that 

C = :select a where  r 

is declared as sensitive, but 

D = select a '  where  0 

is disclosed, where 0 is a condition that is less restrictive than r and a '  is 
obtained from a, by removing the selection attributes that are no longer used, 
because 0 requires less attributes than r In this case D may be combined with 
the query 

Q = select a where  0 A --r 

to attack C, using the complement strategy D - Q. 
Our solution in this case is to enlarge the condition of C from r to 0; that 

is, to replace C with 
C t = select a where  r 

The query Q would then return no tuples, its condition being O A -,8, and D - Q 
will return D. In the above example, this would mean changing the sensitive 
concept to select Name where  Bldg=l. 

s It may be interesting to note, that whereas here we maintain soundness while aban- 
doning completeness, in statistical databases the dual approach has been suggested, 
in which completeness is maintained while soundness is abandoned. Specifically, com- 
plete answers are augmented with fictitious information. 
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7 C o n c l u s i o n  

In this paper we extended our previous work on the controlled disclosure of 
sensitive information to foil multi-query attacks, and we argued that  the en- 
hanced algorithm prevents any kind of attack on sensitive information. Much 
work remains to be done and we mention three research problems. 

First, we are interested in extending this work to remove the simplifying 
assumptions that  have been made. Chiefly among them are the assumptions of 
a single relation database, and the limitations on the kind of views that  may be 
used for bo th  concepts and queries. 

Second, we have assumed that  the databases are "static"; i.e., when consid-  
ering a sequence of queries by the same user, we assumed that  the extensions of 
concepts do not change via insertions or deletions of tuples. While this may  be 
the nature  of statistical databases, a general disclosure control algorithm must  
account for updates as well (for example, when the tuples previously released 
are deleted from the database).  

This s tudy extended the analysis from sequences of single-query attacks to 
sequences of multi-query attacks. However, each user continues to maintain an 
individual "account" with the system. The methods are thus still vulnerable to 
groups of several users who in collusion aggregate an amount  of information tha t  
is considered to pose a security risk. 
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