
E n h a n c i n g the Control led Di sc losure
of Sensi t ive In format ion

Donald G. Marks, Amihai Motro, and Sushil Ja jod ia

Department of Information and Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444

A b s t r a c t . The so-called "aggregation problem" is addressed, where the
issue is how to release only a limited part of an information resource, and
foil any attacks by users trying to aggregate information beyond the pre-
set limits. The framework is that of relational databases, where sensitive
information can be defined flexibly using view definitions. For each such
view, the tuples that have already been disclosed are recorded in tension-
ally rather than extensionally; that is, at each point, sub-view definitions
are maintained that describe all the sensitive tuples that have been re-
leased to each individual. While our previous work foiled sequences of
single-query attacks attempted by individual users, it did not consider
multi-query attacks, where a combination of queries is used to invade the
sensitive information. In this study we enhance our previous solutions to
guard the sensitive information against two kinds of multi-query attacks:
join attacks, and complement attacks.: We then argue that the enhanced
algorithm renders the sensitive information immune to attacks.

1 Introduction

In has been observed~ that often the release of a l imited par t of an information
resource poses no security risk, but the release of a sufficient par t of tha t re-
source might pose such risks. This problem of controlled disclosure of sensitive
information is known as the aggregation problem. In [10] we argued tha t it is pos-
sible to art iculate the specific sensitive concepts within a da tabase tha t should
be protected against over-disclosure, and we provided an accounting sys tem to
enforce such controlled disclosure. Our methods foil any a t t e m p t to a t tack these
predefined secrets either by disguising queries or by surrepti t iously accumulat -
ing tuples. The accounting methods that we developed to thwart such a t t emp t s
were shown to be both accurate and economical.

Our previous work tracked continuously the queries a t t empted by each in-
dividual user, but it assumed that each "at tack" consisted of a single query
at a t ime; tha t is, it did not consider attacks through combinat ions of several

The work of Morro was supported in part by ARPA grant, administered by the
Office of Naval Research under Grant No. N0014-92-J-4038. The work of Jajodia
was supported in part by NSF Grant No. IRI-9303416.

291

queries. In this study we enhance our previous solutions to guard the .~ensilive
concepts against two kinds of multi-query attacks: (1) join attacks, in which two
queries targeting narrower (and therefore unprotected) associations of attributes
are joined, to create larger associations that are supposed to be protected: and
(2) complement attacks, in which a query targeting a larger set of tuples (which
embeds the protected tuples, but is itself unprotected) is combined with a query
on the unprotected tuples within the larger set (which is unprotected), to derive
tuples in the protected set. In addition, we show that the enhanced algorithm
prevents any kind of attack on sensitive concepts.

Section 2 summarizes these concepts and methods as developed in [l 0]. Sec-
tion 3 describes the multi-query attack strategies, Section 4 shows how these
attacks can be foiled, and Section 5 argues that the enhanced algorithm pro-
vides concepts with immunity to attacks. Section 6 considers several related
considerations, and Section 7 discusses further research problems.

1.1 R e l a t e d Work

Related work was discussed in [10] and has not changed significantly in the in-
terim. Major studies of interest include [11, 4, 7, 6, 5]. Many of the previous
studies suggest terminology and reason from examples to derive specific solu-
tions for specific problems. Recent work on the problem has been meager, with
an occasional reference in the more general context of inference problems. For
example, Campbell [2] notes that aggregation is a "big security problenf' but.
offers no references to detailed studies, only to approaches that work in some
cases. Of course, many of the techr/iqu~/s, used in this study have been developed
previously for use on other problems. These efforts are noted as appropriate.

Similar problems occur for statistical databases (SDB). In statistical data-
bases users can retrieve various characterizations (such as salaries), but not iden-
tities (such as people or institutions). The work of [1] and [9] provide e•
overviews of statistical database security problems. None of the SDB techniques
assume that.the data is kept in a relational databases, rather the problems are
couched in terms of simple tables. Common techniques for controlling disclosure
include linear programming and answer size restrictions. Little research has been
clone on auditing or query sequence control as is addressed here. If the holders
of statistical data, such as census bureaus, wish to make data more widely avail-
able through on-line access to relational databases, variations of the techniques
presented here may have applicability,

Our approach allows a flexible (view-based) definition of the sensitive infor-
mation, but develops an accurate method for accounting access to such views.
The main contribution of [10] was a method to articulate specific sensitive con-
cepts and to account for individual user access to these sensitive concepts. The
main contributions of this study is to control alternative ways of determining
tuples in these sensitive concepts.

We choose views as our mechanism for articulating more specific sensit'ive
concepts. This was previously proposed by Denning et al. [3] as an access control
mechanism, but this is the first application of the technique to the aggregation

292

problem. As queries are also views, we can then check each query to see if it
intersects a sensitive view. This intersection is also a view; in fact, it. is a sub-
view of both the sensitive concept and the query. By maintaining a "history"
of these sub-views of the sensitive views and their sizes, we know how many,
and which, tuples of each sensitive concept have been accessed. This eliminates
the need to maintain a history of the sensitive tuples themselves tha t have been
accessed. The technique integrates the accounting and naming mechanisms of
secrets, resulting in an efficient and complete system for tracking access.

1.2 P h o n e b o o k E x a m p l e

The Secret Government Agency (SGA) Phonebook is a common example of
the aggregation problem. In this example, the entire phonebook is a classified
document and is not available without the appropriate clearance; yet, indhddual
phonebook entries are available to inquiring callers. A simple example of such a
phonebook, with scheme Emp = (Name, Tel, Div, Mail, Bldg, Room.) is shown
in Figure 1. The reason that the entire phonebook is classified is because a
phonebook provides a way of grouping the individuals into concepts. In relational
database systems tuples are associated together by means of views, so each view
may be regarded as a concept.

Name Tei" Div Mail]Bldg[Room
A. Long x3333 A m505~ 2] 307 [

!

P. Smith x l l l l B m303 2 [610
E. Brown x2345 B m1011 1 [455
C. Jones :x1234 A m2021 I [307

i

M. Johnson x1234 A ml01 i 3] 103
B. Stevenson ix2222 A m202 1 [305
S~ Quinn lx2222 C m6061 3] I01
R. Helmick ix1234 A m404! I] 307
A. Facey xI122 C m505! 2] 400
S. Sheets ix2345 B m1011 1 I 455 !

Fig. I. The Phonebook example

2 The Mode l

2.1 B a s i c A s s u m p t i o n s

The model is most ly unchanged from [10], and we repeat here the assumptions
and features tha t are relevant to this paper. We assume that the sensitive infor-
mat ion is a relatively small portion of a relational database. We adopt the usual

293

definition of relational databases~ but restrict our attention to databases that are
single relations, each with a simple key, and to projection-selection views, where
all selections are conjunctions of simple clauses of the form attribute = value. We
denote the database scheme R = (A t , . . . , An). The domain Di of an attribute
Ai is the projection of the given instance of R on this attribute. This so-called
active domain is the finite set of values used for Ai in the database instance. All
tuples t = (tl, t2 , . . . , tn) are therefore elements of the set D1 x D_~,-.-, x Dn.

We will define both sensitive information and queries in terms of such selec-
tion-projection views. More comprehensive views may be formed by taking com-
plements and unions of views. Databases consisting of several relations may be
treated view the Universal Relation formalism [12]. The limitation of selection
clauses to the form attribute = value is fairly serious, as it prohibits clallses of
the form attribute < value. While such views may be handled by decomposing
them into a set of attribute = value views, handling such views satisfactorily is
a topic for future research.

2.2 Queries and Concepts

A query is a view. Its extension in the present database instance is the an.
swer to the query. Queries are defined by users and describe the information
they are seeking. A concept is also a view. Concepts are defined in tile system
and describe the information that needs to be protected. Views (queries or con-
cepts) may be syntactically different, but yet describe the same information.
Consider the example database :scheme Emp = (Name, Tel, Div, Mail. Bid 9.
Room) and the views select Name, Room where Room=t03 and select Name
where Room=103. Both view definitions are identical, except that the latter
view does not project a selection attribute which is projected by the former
(ROom). Nevertheless, because the values of selection attributes are known (in
this case, the constant value 103), there is no difference in the information these
views describe. Consequently, regardless of their syntax, we shall treat all views
as is their projection attributes include all their selection attributes.

2.3 Concept Disclosure

Let U and V be views of database scheme R. U overlaps V, if their selection
conditions are not contradictory, 1 and U's projection attributes contain V's
projection attributes. When U overlaps V, then the extension of U could be
processed by another view that will remove the extra attributes. Some of the
resulting tuples may be in the extension of V.

Assume that U overlaps V. The restriction of V to U, denoted V [U, is
the view obtained from V by appending to its selection condition the selection
condition of U. The exclusion of U from V, denoted V] -,U, is the view obtained

i The selection conditions of U and V are contradictory, if U's selection condition
includes the clause Ai = a and V's ~lection condition includes the clause .4~ = b,
for some attribute Ai and two different constants a and b.

294

from V by appending to its selection condition the negation of the selection
condition of Ufl Obviously, V = (Y t U) U (V] --,U).

Let C be a concept view and let Q be a query view. Q discloses C, if Q
overlaps C. Intuitively, a query discloses a concept, if its result could be processed
by another query, to possibly derive tuples from the protected concept. The
disclosure relationship between a query and a concept is illustrated schematically
in Figure 2.

As an example, with the previous database scheme, consider this concept

C -= WName,Div,RoornO'(Roorn=lO3)h(Div=B)
(names of those in division B and in room 103)

and these three queries

1. Q1 = 7~Name,Tel,Div,RoornO'(Room=lO3)A(Div=B)A(Tel=x2345)
(names of those in room 103, in division B, and with telephone x2345)

2. Q? = 7rNarne,Div,Jloom~YDiv=B
(names and rooms of those in division B)

3. Q3 = lrName,Div,ttoon~O'Roorn=102
(names and divisions of those in room 102)

Qx discloses C, because applying the query 7VName,D~v,Roorn to the result, of Qt
may yield some tuples in C. Q2 discloses C in its entirety, because applying
the query Crnoo,~=lo3 to the result of Q~ yields all the tuples of C. Q3 does not
disclose ~ny tuples of C because their selection conditions are contradictory.

Notice that a concept protects its tuples, but not its sub-tuples; i.e., a query
on a subset of the concept's projection attributes does not disclose the concept.
On the other hand, a query on a superset of the attributes would disclose the
concept (unless their selection conditions are contradictory).

As mentioned earlier, disclosure control requires that the number of tuples
disclosed from a given concept does not exceed a certain predetermined number.
For each concept C we define three integer values called concept total, concept
threshold and concept counter, and denoted respectively, N, T and D. N de-
notes the total number of tuples in the extension of this concept, T denotes the
maximal number of tuples that may be disclosed from this concept, and D de-
notes the number of tuptes from this concept that have already been disclosed.
If T > N, then the concept is unrestricted; we shall assume that none of the
concepts are unrestricted. As queries are processed, the database system must
keep track of D to ensure that D < T. The number of tuples in the extension of
a view V will be denoted]tVII; e.g., tlC[[= g .

[I0] described a quick method that determines whether Q discloses C, and
then defines the precise sub-view of C that is disclosed by Q. This method was at
the basis of several algorithms for controlling the disclosure of sensitive concepts.
The main feature of the solution is that tuples that have already been disclosed
are recorded intensionatly rather than extensionaUy; that is, at each point, view
definitions are maintained that describe all the concept tuples that have released
to each individual.

2 Note that the resulting selection condition is no longer a simple conjunction.

295

p ~ y concept

disclosed concept tuples

tu_.u_ples retrieved b ue

Fig. 2. Disclosure relationships between a query and a concept

3 Attack Strategies

As already noted, an essential principle behind these methods is that a concept
protects its tuples, but not its sub-tuples; i.e., a query on a subset of the concept's
projection attributes is always allowed. The idea is that concepts are designed to
protect minimal associations of attributes; any lesser associations are assumed to
be "harmless". This, however, leaves concepts vulnerable to attacks that a t tempt
to construct additional concept tuples from information that is available freely.

Recall that a concept is a set of projection attributes a and a selection con-
dition r (and a includes the attributes used in r The obvious w a y t 0 generate
tuples over c~ tha t satisfy r is to start with "larger" views, where either the set
of attributes contains a and/or the condition does not contradict r and then
use projection and/or selection to generate concept tuples. However, such views
are tracked by the algorithms described in [10].

The only other possibility is to generate concept tuples from views in which
the set of attributes is strictly contained in a and/or the condition contradicts
r as such views are not controlled by these algorithms.

Given the sensitive concept

C = se lec t a w h e r e r

two attacks are possible:

1. J o i n . In the join attack two queries are submitted:

Q1 : se lect a l w h e r e r
Q2 = se lec t a2 w h e r e r

where a l U a 2 = a and a l N a 2 contains a key to C, and r and r
are conditions that do not contradict r Both queries are allowed, because

296

the attribute sets a l and a2 are not protected. Clearly, their natural join
Q1 ~ Q2 yields tuples in C.

2. C o m p l e m e n t . In the complement attack two queries are submitted:

Q1 = select al where 0
Q~ = s e l e c t c~ w h e r e 0 A -~r

where 0 is a condition that is less restrictive than r and a ' is obtained from
a, by removing the selection attributes that axe no longer necessary, because
0 requires less attributes than r The former query is allowed because (~1 is
not protected; the latter query is allowed because its condition contradicts
r Clearly, their difference Q1 - Q 2 (the complement of Q~ within Q1) yields
tuples in C.

In both attacks, some additional information was used. In the first attack,
it was knowledge of the database scheme and the key attribute. In the second
attack, the condition -"4 would have to be expressed via specific values that
"complement" the values used in ~b. In both cases, however, the system must
assume that such knowledge might be available to the attacker.

As an example, assume the sensitive concept

select Name where Bldg=l and Room=307

The key to this concept is Name.

1. Jo in . Consider the queries

Q1 = select Name, Tel where Bldg=l
Q2 = select Name, Tel where Room=307

Both would be allowed as neither contains the complete set of the con-
cept's attributes (Name, Bldg, Room). Yet, their natural join "contains" the
concept (appropriate selecting and projecting from this join wilt yield the
concept in its entirety).

2. C o m p l e m e n t . Consider the queries

Q1 : select Name where Bldg-:l
Q~ = select Name where Bldg=l and Room=305
Qs = select Name where Bldg=l and Room=455

The first would be allowed because it does not contain the entire set of the
concept's attributes, and the other two because their selection conditions are
contradictory with that of the concept. Yet, the difference of the first and
the union of the other two corresponds to the concept.

297

4 Guarding against Attacks

The common element in both attacks was the lack of control over views that
ask for a subset of the concept's attributes that contains the key attribute of
the concept (Q1 and Q2 in the first attack, and Q1 in the second attack). By
extending our control to such views, both kinds of attacks would be foiled.

This extension implies a significant change to the semantics of a sensitive
concept: a concept now protects also all its key projections. To implement the
new semantics, we define a new view relationship.

Let U and V be two views of database scheme R. U critically overlops V,
if their selection conditions are not contradictory, and the intersection of their
projection attributes contains a key of V. When U critically overlaps V, then the
extension of U could be processed by a projection that removes the attributes
in U but not in V, and possibly generate sub-tuples of tuples in the extension
of V, that include its key attribute. The definitions of the restriction V I U and
the exclusion V [-~U remain unchanged.

We now update the disclosure relationship between a query and a concept.
Let C be a concept and let Q be a query. Q discloses C i fQ critically overlaps C.
Intuitively, a query discloses a concept if its result could be processed by another
query to possibly derive sub-tuples from the protected concept that include its
key attribute. The new disclosure relationship between a query and a concept is
illustrated schematically in Figure 3.

tuples protected by concept

disclosed
concept
sub- tuptes

key attribute

tuples retrieved by query

Fig. 3. Disclosure relationships based on critical overlap

By considering queries that target the key of a concept (i.e., critically over-
lap the concept), as if they "fully" overlap the concept, attacks of the kind
described above would be foiled. With this extended definition of disclosure, the

298

earlier disclosure control algorithms are still valid. Figure 4 reproduces such an
algorithm.

This algorithm associates with each concept C a predicate P that describes
the concept tuples that have already been disclosed. P is initialized to true.
Assume that Q1, . - . , Qp have already been processed when Qp+l is received, and
let c~1,..., ap denote their respective selection conditions. The present value of P
would be a l V . . . V ap. After computing the restriction of C to Qp+l (the tuples
in this concept that are disclosed by this query), we exclude from it the view
err (the tuples of this concept that have already been disclosed by the previous
queries). The tuples in this new query are those that have not been delivered
already.

The input to this algorithm is a set C1,. �9 Crn of protected concepts, each
with its associated predicate Pi and counters Ni, iF/ and D~, and the query Q
whose selection predicate is ~. When it terminates, the value of permi t indicates
whether the answer to Q should be presented to the user or not.

Algorithm (d~sclosure)
permit := true
materialize Q
i :=O
while permit and~ < m~
do

i : = i + 1
Mi :=0
if Q critically overlaps Ci
then

M, := t{(C, } Q) 1 -~rp,]l
if Di + Mi >Ti
then

permit := false
break

endif
endif

done
| f permit
then

for i = 1, . . .m
do

Pi := Pi Va
Di := Di + Mi

done
endif

Fig. 4. Disclosure control algorithm that defeats join and complement attacks

299

It should be noted that key-containing sub-tuples are counted as if they were
full tuples. That is, a query that overlaps a concept and a query that critical]y
overlaps a concept incur the same "cost" to the user, against that concept.
However, a user who, in two separate queries, extracts two sub-tuples of the
same tuple, is only "charged" once!

Note that a query that intersects only with the non-key attributes of a con-
cept, is answered freely, as concepts protect only their key projections. The
reason is that such queries cannot be used in any of the attacks described ear-
lier. It should be noted, though, that it might be necessary to consider near keys
(i.e., concept attributes whose active domains are nearly the size of the concept.)
as if they were keys.

As an example, consider the previous concept select Name where Btdg=l
and Room=307, and the join attack and complement attacks specified earlier. In
the join attack, both Qt and Q~ critically overlap the concept, and their tuples
will be accounted for. Similarly, in the complement attack, Q2 and Q3 will be
delivered freely, as they do not critically overlap the concept (their selection
conditions are contradictory to the concept's), but Q1, which critically overlaps
the concept, will be accounted for. Altogether, these attempts no longer provide
any additional opportunities.

5 I m m u n i t y to Attacks

In this section we argue that the algorithm presented in Section 4 provides sen-
sitive concepts with immunity to attacks.

Consider a set X of elements and a binary property p, where each x E X
either has or does not have this property p, and assume that we are tasked with
finding the subset Y of X of elements that have the property p. It is obvious
that Y could be built in only two ways:

1. Posi t ively: by starting with Y = ~, and then examining every element of
X and adding it to Y iff it has p.

2. Negat ively: by starting with Y = X, and then examining every element of
X and removing it from Y iff it does not have p.

Transferring this problem to relational databases, we assume a set of unique
values, each such value is associated with a non-unique set of values, and an
extra value that denotes whether the element has the property. Altogether, an
element is now z = (x l , . . . , xn), where zl provides the identity of the element
(the key), xn denotes (e.g., using the values 1 and 0) whether the element has the
property or not (the condition), and the other values constitute the description
of the element. The task is now to isolate elements z = (xl , Zn) such that
X n = l .

In accordance with the previous observation, these elements could be isolated
in one of two ways:

300

1. Pos i t ive ly : Y = e=,=l (X)
2. Nega t ive ly : Y = X - ~=.#1 (X)

Note that the first X in the second formula does not use its xn values, and the
method will still work even when this value is unknown.

Assume now that we are tasked to prevent the retrieval of tuples of X that
satisfy the condition. Then defeating these two methods of construction is guar-
anteed to accomplish this task.

Clearly, barring all tuples (x l , . . . , x~), unless they are certain not to satisfy
the condition, will defeat both methods of construction, because when X contains
only tuples that do not satisfy the condition, both formulas evaluate to the empty
set. Thus, to populate the set Y, one needs to construct tuples (x l , . . . , x,) that
might satisfy the condition.

Intuitively, to populate the set X in the first formula (the positive method)
with tuples (x l , . . . , xn) that might satisfy the condition, one may use (1) queries
that specify all these attributes (and possibly others) and might satisfy the condi-
tion; or (2) queries that specify fewer attributes and might satisfy the condition.
Only the former kind of queries was controlled by the earlier model. The latter
kind is the source for the join attack. The set X in the first term of the second
formula (the negative method) can be populated in similar ways (though xn need
not be retrieved). Once this term is populated, it is combined with the second
term to form a complement attack. Hence the two new attack methods, the join
and the complement.

Yet, regardless of the specific method~ by b~rring access to any tuple that
contains the key xl, unless it is certain not to satisfy the condition z , , it is clear
that tuples (x l , . . . , xn) that might satisfy the condition would never become
available (and Y will remain empty). Queries that contain tuples with the key
and might satisfy the condition, were said to critically overlap the concept. This
discussion is summarized in the following theorem.

T h e o r e m . Monitoring queries that critically overlap a concept provides com-
plete protection to the concept.

Of course, inference based on other knowledge may still be possible [8], but
users will not be able to attack the concept by queries alone.

6 Addi t iona l Cons iderat ions

6.1 Pa r t i a l Answers

All our disclosure algorithms behaved similarly, when the size of an answer to a
disclosing query exceeds the allotment remaining on a particular concept: such a
query is denied in its entirety. This approach maintains the completeness of the
answers issued; that is, queries are either answered completely, or not answered
at all.

At times, it would seem preferable in such situations to deliver the remaining
allotment, even if it does not answer the query completely. It should be empha-

301

sized that in abandoning completeness, we are violating a basic premise of query
answering mechanism, by which all answers must be sound and complete. 3

Modifying our disclosure algorithms to deliver partial answers is straightfor-
ward, though a question that still remains is which tuples to deliver, and whether
users should be notified when answers are incomplete.

6.2 Disclosing K e y P ro j ec t ions

The enhancements of the controlled disclosure algorithm against attacks offered
in Section 4 required new semantics for concepts: concepts protect all their key
projections. At times, however, these semantics may be at odds with reality. In
our example, consider the sensitive concept select Name where Bldg=l a n d
Room=307. To protect this concept, in every query that includes Name, the
number of employees in room 307 of building 1 is noted, and the cumulative
number is not allowed to exceed a predetermined threshold. However, this might
prove impossible, if, for example, the institution needs to make public its entire
list of employees in building 1; i.e., the concept select Name where Bldg=l. In
such a case, the concept becomes vulnerable to complement attacks, via a query
on the names of employees in building 1, and queries on the names of employees
in building 1 but in rooms other than 307.

Hence, when a key projection of a concept cannot be protected, the concept
remains vulnerable to complement attacks. Formally, assume that

C = :select a where r

is declared as sensitive, but

D = select a ' where 0

is disclosed, where 0 is a condition that is less restrictive than r and a ' is
obtained from a, by removing the selection attributes that are no longer used,
because 0 requires less attributes than r In this case D may be combined with
the query

Q = select a where 0 A --r

to attack C, using the complement strategy D - Q.
Our solution in this case is to enlarge the condition of C from r to 0; that

is, to replace C with
C t = select a where r

The query Q would then return no tuples, its condition being O A -,8, and D - Q
will return D. In the above example, this would mean changing the sensitive
concept to select Name where Bldg=l.

s It may be interesting to note, that whereas here we maintain soundness while aban-
doning completeness, in statistical databases the dual approach has been suggested,
in which completeness is maintained while soundness is abandoned. Specifically, com-
plete answers are augmented with fictitious information.

302

7 C o n c l u s i o n

In this paper we extended our previous work on the controlled disclosure of
sensitive information to foil multi-query attacks, and we argued that the en-
hanced algorithm prevents any kind of attack on sensitive information. Much
work remains to be done and we mention three research problems.

First, we are interested in extending this work to remove the simplifying
assumptions that have been made. Chiefly among them are the assumptions of
a single relation database, and the limitations on the kind of views that may be
used for bo th concepts and queries.

Second, we have assumed that the databases are "static"; i.e., when consid-
ering a sequence of queries by the same user, we assumed that the extensions of
concepts do not change via insertions or deletions of tuples. While this may be
the nature of statistical databases, a general disclosure control algorithm must
account for updates as well (for example, when the tuples previously released
are deleted from the database).

This s tudy extended the analysis from sequences of single-query attacks to
sequences of multi-query attacks. However, each user continues to maintain an
individual "account" with the system. The methods are thus still vulnerable to
groups of several users who in collusion aggregate an amount of information tha t
is considered to pose a security risk.

R e f e r e n c e s

1. M.R. Adam and J .C. Wortmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4):515-556, De-
cember 1989.

2. J. R. Campbell. A brief database security tutorial. In Proceedings of 18th National
In]ormation System Security Conference (Baltimore, Maryland, October 10-13),
pages 740-757, 1995.

3. D. E. Denning, S.G. Akl, M. Morgenstern, P .G. Neumann, R.R. Schell, and
M. Heckman. Views for multilevel database security. In Proceedings of IEEE
Symposium on Security and Privacy, (Oakland, California), 1986.

4. S. Jajodia. Aggregation and inference problems in multilevel secure systems. In
Proceedings of the 5th Rome Laboratory Data Security Workshop, 1992.

5. T.Y. Lin. Database, aggregation and security algebra. In Proceedings of the 4th
IFIP Working Conference on Database Security, September 1990.

6. T.F. Lunt. Aggregation and inference: Facts and fallacies. In Proceedings o] IEEE
Symposium on Security and Privacy, pages 102-109, May 1989.

7. T.F. Lunt and R.A. Whitehurst. The Sea View formal top level specifications.
Technical report, Computer Science Laboratory, SRI International, February 1988.

8. D. G. Marks. Inference in MLS databases. IEEE Transactions on Knowledge and
Data Engineering, 8(1):46-55, February 1996.

9. Z. Michalewicz. Security of a statistical database. In Z. Michalewicz, editor, Sta-
tistical and Scientific Databases. Ellis Horwood, Chichester, England, 1991.

303

10. A. Motro, D. G. Marks, and S. Jajodia. Aggregation in relational databases: Con-
trolled disclosure of sensitive information. In Proceedings o] ESORICS.94, Third
European Symposium on Research in Computer Security, (Brighton, UK, Novem-
ber 7-9), Lecture Notes in Computer Science No. 875, pages 431-445. Springer-
Verlag, Berlin, Germany, 1994.

11. B. Thuraisingham, editor. Proceeding o] the 3rd RADC Database Security Work.
shop, Report MTP 385. Mitre Corp., Bedford, Massachusetts, 1991.

12. J. D. Ullman. Database and Knowledge.Base Systems, Volume II. Computer Sci-
ence Press, Rockville, Maryland~ 1989.

