Skip to main content

How to decompose constrained course scheduling problems into easier assignment type subproblems

  • Tabu Search and Simulated Annealing
  • Conference paper
  • First Online:
Practice and Theory of Automated Timetabling (PATAT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1153))

  • 282 Accesses

Abstract

We propose in this paper a new approach for tackling constrained course scheduling problems. The main idea is to decompose the problem into a series of easier subproblems. Each subproblem is an assignment type problem in which items have to be assigned to resources subject to some constraints. By solving a first series of assignment type subproblems, we build an initial solution which takes into account the constraints imposing a structure on the schedule. The total number of overlapping situations is reduced in a second phase by means of another series of assignment type problems.

The proposed approach was implemented in practice and has proven to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E. and Xue, J., “Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs”, SIAM J. Comput. 20/2 (1991) 209–221.

    Google Scholar 

  2. Carlson, R.C. and Nemhauser, G.L., “Scheduling to minimize interaction cost”, Operations Research 14 (1966) 52–58.

    Google Scholar 

  3. Edmonds, J. and Karp, R.M., “Theoretical improvements in algorithmic efficiency for network flow problems”, Journal of the A.C.M. 19/2 (1972) 248–264.

    Google Scholar 

  4. Ferland, J.A. and Lavoie, A., “Exchanges procedures for timetabling problems”, Discrete Applied Mathematics 35 (1992) 237–253.

    Google Scholar 

  5. Friden, C., Hertz, A. and de Werra D., “TABARIS: an exact algorithm based on tabu search for finding a maximum independent set in a graph”, Computers and Operations Research 17 (1990) 437–445.

    Google Scholar 

  6. de Gans, O.B., “A computer timetabling system for secondary schools in the Netherlands”, European Journal of Operational Research 7 (1981) 175–182.

    Google Scholar 

  7. Garey, M.R. and Johnson, D.S., “Computers and Intractibility: a Guide to the Theory of NP-Completeness”, Freeman, New York (1979).

    Google Scholar 

  8. Glover, F., “Tabu Search, Part I”, ORSA Journal on Computing 1 (1989) 190–206.

    Google Scholar 

  9. Glover, F., “Tabu Search, Part II”, ORSA Journal on Computing 2 (1990) 4–32.

    Google Scholar 

  10. Hertz, A. and Robert V., “Constructing a course schedule by solving a series of assignment type problems”, ORWP 94/10, Dept of Maths, EPFL, Switzerland (1994).

    Google Scholar 

  11. Mannino, C. and Sassano A., “An exact algorithm for the stable set problem”, IASI-CNR Report No. 334, Rome, Italy (1992).

    Google Scholar 

  12. Mulvey, J.M., “A classroom/time assignment model”, European Journal of Operational Research 9 (1982) 64–70.

    Google Scholar 

  13. Ross, C.T. and Soland, R.M., “A Branch and Bound Algorithm for the Generalized Assignment Problem”, Mathematical Programming 8 (1975) 91–103.

    Google Scholar 

  14. Tripathy, A., “A Lagrangian relaxation approach to course scheduling”, Journal of the Operational Research Society 31 (1980) 599–603.

    Google Scholar 

  15. de Werra, D., “An introduction to timetabling”, European Journal of Operational Research 19 (1985) 151–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund Burke Peter Ross

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robert, V., Hertz, A. (1996). How to decompose constrained course scheduling problems into easier assignment type subproblems. In: Burke, E., Ross, P. (eds) Practice and Theory of Automated Timetabling. PATAT 1995. Lecture Notes in Computer Science, vol 1153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61794-9_71

Download citation

  • DOI: https://doi.org/10.1007/3-540-61794-9_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61794-5

  • Online ISBN: 978-3-540-70682-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics