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Abst rac t .  This paper focuses on a method for generating polyhedra 
from a set of lattice points, such as three-dimensional (3D) medical com- 
puterized tomography images. The method is based on combinatoriM 
topology [1] and algebraic properties of the 3D lattice space [2]. It is 
shown that the method can uniquely generate polyhedra from a subset 
of the lattice space independently of the choice of neighborhood. Fur- 
thermore, a practical algorithm is developed and experimental results 
using 3D medical imagery are presented. 
Key  words. Polyhedra, lattice space, topology, boundary detection, 
medical images. 

1 I n t r o d u c t i o n  

Representation of 3D objects is necessary when we deal with 3D objects for 
computer applications. Polyhedra are one of the well-known representations used 
in the various areas related to computer vision [3, 4, 5, 6]. This paper focuses 
on the generation of polyhedra from a set of lattice points, such as 3D medical 
computerized tomography images whose data are digitized. 

Many polyhedral representations in a lattice space have been introduced; 
these representations can be separated into two main groups. The first group 
consists of interpolating representations. One of the well-known representations 
of this kind is the Marching Cubes Method [7]. This method generates polyhedral 
surfaces by interpolating densities between lattice points whose densities are 
given. Therefore, the polyhedral surfaces that  are created pass not only through 
lattice points but also through points between lattice points. 

The second group consists of non-interpolating representations. One of these 
representations uses local neighborhood structures, called the 6-, 18- and 26- 
neighborhoods [8]. The neighborhood structures are useful for detecting a poly- 
hedral surface of an object from a given lattice point set [8]. All the vertices of 
the created polyhedral surfaces are lattice points, as compared with the afore- 
mentioned interpolating polyhedra. However, this representation sometimes dis- 
connects objects; this problem is called the connectivity paradox [9]. 
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There is another representation in the second group that  uses global topo- 
logical characteristics of objects as well as local neighborhood structures [9, 10, 
11]. This representation deals not with lattice points but with unit cubes whose 
centers are lattice points, for the preservation of the topology of objects. Thus, 
an object is regarded as a set of unit cubes and its boundary is represented by 
a set of unit squares which enclose unit cubes. 

The polyhedral representation introduced in this paper belongs to the sec- 
ond group, non-interpolating representations. We express an object as a set of 
lattice points, like one of the representations in the second group. However, our 
approach is based on combinatorial topology [1] and uses combinatorial tope- 
logical properties in addition to local neighborhood structures. Therefore, our 
polyhedrM representation of objects preserves topological features underlying 
the objects even if' the objects are represented by sets of lattice points. While 
classical combinatorial topology has been developed in Euclidean spaces [1], com- 
binatorial topology is also required in lattice spaces, as discussed in references 
[12, lal Note that Frangon defined discrete combinatorial surfaces by using 2D 
cells such as squares and triangles [12], while we define digital polyhedra by using 
3D cells which we call aD discrete simplexes in reference [13] and this paper. 

We also introduce an efficient algorithm for implementing our method of 
generating polyhedra from lattice points. Our algorithm generates polyhedra by 
referring to pre-calculated look-up tables and performing simple vector calcula- 
tions. One of the distinctive features of our algorithm is that  it can be applied 
in the same way for any neighborhood in a aD lattice space, such as the 6-, 
18- or 26-neighborhood [8]. Moreover, polyhedra are always uniquely generated 
with respect to each neighborhood. Though a similar algorithm for generating 
polyhedral surfaces was previously introduced [14], the uniqueness feature was 
not proved, and also no neighborhood structures were considered. We also dis- 
cuss the relation between the three polyhedra created under the three different 
neighborhoods relative to a given set of lattice points. 

2 D e f i n i t i o n s  

Assuming that  Z is the set of all integers, Z s can be defined as the 3D lattice 
space which consists of points whose three coordinates are integers. In this sec- 
tion, we analyze the kinds of planes that  can exist in Z a, which we call digital 
planes. Then, we define digital polygons which lie in such digital planes, and 
finally we define digital polyhedra. 

2.1 Digital Planes and Neighborhoods 

Digital planes are defined as planes normal to the elemental direction vectors [2]. 
There are 26 elemental direction vectors and each vector has a direction code 
( i , j ) ,  as illustrated in Fig. 1. The vector with direction code ( i , j )  is represented 
by q~j; it can be drawn from point (0,0) to point ( i , j )  in Fig. 1. A direction 
vector qlj always has an inverse vector. If a vector and its inverse vector define 
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a pair, then there are only 13 pairs of direction vectors, as can be seen from Fig. 
1. The reduced set of 13 vectors are classified into three groups depending on 
their lengths as follows: 

s = {qll,q31, q33} , 

r = {q21,q41, q23,q27,q3s,q32} , 

h = {q22, q24, q26, q2s} , 

(1) 
(2) 
(3) 

where the length of each vector in the set s, r or h is 1, ~ or v/3, respectively. 
We use the notation Cq(x) to describe the digital plane which has normal 

vector qij and passes through the point x. Since Cij(x) is a subset of Z a, Cij(x) 
can be regarded as a 2D lattice space embedded in Z a. The shape of the lattice 
depends on the normal vector of Cij(x), that  is, on qij. If  qij is included in s, 
each cell of the lattice of Cij (x) is a square whose side lengths are 1. If qij is 
included in r ,  each cell of the lattice of Cij(x) is a rectangle whose long side 
lengths are v ~  and whose short side lengths are 1. If qij is included in h, each 

cell of the lattice of C~j (x) is an equilateral triangle whose side lengths are v~.  
These three kinds of 2D lattice spaces are denoted by Sq(x),  Rq(x)  and Hij(x), 
resepectively; examples are shown in Fig. 1. 

Let n(6),  n(18) and n(26) be s, s U r and s O r U h, repspectively; then the 
6-, 18- and 26-neighborhoods [8] of a point x in Z 3 are defined by 

N.~(x) = {y l x - y = +q, y �9 Z 3, q e n(m)} , (4) 

where m = 6, 18, or , 26. The choice of neighborhood determines which kinds of 
digital planes can be defined. If the 6-neighborhood is considered, the resulting 
digital planes can only be Sij(x), while all three types of digital planes, Sij(x),  
Rq(x)  and Hq(x),  exist if the 18- or 26-neighborhood is considered. This is 
because at least two different direction vectors on a digital plane are necessary 
when we draw digital polygons in the digital plane and these direction vectors 
must  be included in n(m) if the m-neighborhood is considered. For example, the 
digital polygons in H22(x) illustrated in Fig. 1 can be described by using two 
direction vectors, q27 and q38, which are included in n(18) and n(26). Thus, 
H22(x) is defined if we consider either the 18- or 26-neighborhood. 

26 25 24 
27 /~  11/'1 23/'1 / /q / 

2 8 / I  : , 'Y l  r , ' z . / l /  / L I / 

I / d l  I I 13,t 3 3 qn 
137~' IUtL/I  133,.,./I �9 1 1  ~ 1 ~  

3 8 / 1  311/"1 321,./] I h-  ~ ~ I 

I 1, 11411,4 
]4 - / [ , /  15t:l~ 14L'[/ / / "  

48./"  411./" 42 l . /  / / / 

(a) (b) (c) (d) 

Fig. 1. (a) Direction codes (i,j) of 26 elemental direction vectors in Z 3. (b) A 2D 
lattice space, Sll(X). (c) A 2D lattice space, R~2(x). (d) A 2D lattice space~ H~(x) .  
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2.2 Dig i t a l  P o l y g o n s  

A digital polygon is defined on a digital plane. Its definition is given in the same 
way as the definition of a polygon in 3D Euclidean space [15]. Let p e r p ( q ~ j )  be 
the set of all direction vectors perpendicular to q i j .  

D ef in i t i on  1. A digital polygon is a finite region surrounded by a sequence of 
p line segments, x2  - x l ,  x3  - x 2 ,  . . . ,  x l  - x p ,  lying in C i j ( x l ) ,  which satisfies 
the relation 

1 

- e (perp(q j) n (5) 

for i = 1 , 2 , 3 , . . . , p  and some k E Z, where x p + l  = x l  and rn = 6, 18 or 26. This 
digital polygon is denoted by 

s = ( 6 )  

Note that  S involves p points x i ,  the p line segments x i + l  - ~ci, and the 
region enclosed by them. The points and the line segments are called vertices 
and edges, respectively. We shall require that the p line segments generate a 
simple closed curve, such that it has no intersections with itself, and also that  
the points are numbered in a counterclockwise fashion with respect to the inside 
of the simple closed curve. Because it is assumed that  the polygon is viewed from 
the direction of the normal vector of the digital plane in which the polygon lies, 
the ordering of the points is uniquely determined by the normal vector. 

We can extend the notion of digital polygons to treat  not only simply con- 
nected polygons [15], but also polygons that contain holes, such as that  illus- 
trated in Fig. 2. If a digital polygon has n holes, the inside of the digital polygon 
is encircled by n + 1 simple closed curves because each hole is encircled by a sim- 
ple closed curve. Clearly, the holes themselves are also digital polygons, although 
the ordering of the points should be opposite from that  in a simply connected 
digital polygon. Namely, the order is clockwise with respect to the inside of the 
polygon encircling a hole because the inside of the hole is regarded as the outside 
of the polygon. The extended notation for a digital polygon with n holes is 

S = ( ~ x 2 . . . x p ~  Ylo)Yl(2) ""Y~(ql)~ " ' ;  Y~(1)Yn(2)'''Yn(qn)) (7) 

where ( x l x 2 . . .  x p )  is a simply connected digital polygon and ( y ~ o ) y ~ ( 2 ) . . .  y~(q~)), 

for i = 1 , 2 , . . . , n ,  is a hole in ( x l x 2 . . . x p )  . 

x x 7 I 

t 

Fig. 2. An example of a digital polygon with a hole in a digital plane S i j ( x ) .  
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2.3 D ig i t a l  P o l y h e d r a  

Because we will define digital polyhedra in Z a using concepts of combinatorial 
topology [1], it is necessary to introduce 3D volumetric elements in Z 3, which 
we call 3D discrete simplexes [13]; 3D volumetric elements in Euclidean space 
are called 3D simplexes [1]. The dimensions of the possible simplexes in a 3D 
space range from 0 to 3; we abbreviate nD discrete simplexes to n-simplexes. 

We can define n-simplexes in Z 3 using neighborhood structures [13]. A 0- 
simplex is defined as an isolated point in Z a, and a 1-simplex is defined as a line 
segment whose endpoints neighbor each other. Thus, the 1-simplexes depend on 
the assumed neighborhood, as shown in the first line of Fig. 3. A 2-simplex is 
defined as a minimum non-zero area encircled by 1-simplexes; the possible 2- 
simplexes are shown in the second line of Fig. 3. A 3-simplex, which is necessary 
for our definition of a digital polyhedron, is defined as a minimum non-zero 
volume enclosed by 2-simplexes. They are shown in the last line of Fig. 3. 

The 0-, 1- and 2-simplexes included in a 3-simplex are called the vertices, 
edges and faces of the 3-simplex, respectively. If the intersection of two 3- 
simplexes is a common vertex, edge or face of the 3-simplexes, we say that  the 
3-simplexes are adjacent. If, for a set of 3-simplexes, there exists a sequence of 
3-simplexes between two arbitrary 3-simplexes in the set such that consecutive 
simplexes in the set are adjacent, the set is said to be connected. The definition 
of a digital polyhedron can now be given. 

D e f i n i t i o n  2. A digital polyhedron is a union of connected 3-simplexes. 

This definition includes many cases that are not regarded as classical polyhedra 
[15], such as a union of two 3-simplexes which share only one vertex. 

Because the boundaries of 3-simplexes are 2-simplexes, the surface of a digital 
polyhedron is described by a set of 2-simplexes. Note that the 2-simplexes in Fig. 
3 are all in digital planes. If we combine 2-simplexes which are connected in a 
digital plane, a digital polygon is created from the connected 2-simplexes, as 
illustrated in Fig. 2. Therefore, a digital polyhedron can be represented by a 
set of digital polygons which are created by combining connected 2-simplexes 
in a digital plane. The notation for a digital polyhedron bounded by p digital 
polygons, $ 1 , 8 2 , . . . ,  Sp, is 

P = { & , & , . . . , S p }  . (8) 

The counterclockwise ordering of the vertices in each digital polygon determines 
the side of the digital polygon which faces the exterior of the digital polyhedron 
P.  The digital polygons which enclose P,  their edges and their vertices are called 
the faces, edges and vertices of P,  respectively. 

We can derive the next proposition, which is helpful for the following dis- 
cussion, from Definition 2. The proof is omitted since it can be derived from 
reference [1]. 

P r o p o s i t i o n  1 If  two digital polyhedra, P1 and :P2, have at least one common 
vertex, then P1 U P2 is also a digital polyhedron, P. 
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a 

N6 N18 N26 

Fig. 3. All possible 1D, 2D and 3D simplexes for the 6-, 18- and 26-neighborhoods. 

3 A Method for Generating Polyhedra 

This section introduces a method for generating digital polyhedra from a subset 
of Z 3, denoted by V. Assume that  every point in Z 3 is assigned a value of 1 or 
0, i.e., Z 3 is binarized, and that  the value of every point in V is 1 while that  
of every point in the complement of V is 0. Points in V and its complement 
are called 1-points and 0-points, respectively. Our method is divided into two 
stages, which are shown separately. We also give an algorithm as a summary of 
the method, as well as some properties of digital polyhedra. 

3.1 Digital  Po lyhedra  in Unit  Cubes  

Every 3-simplex illustrated in Fig. 3 is included in a unit cube, that  is, the 
size of every 3-simplex is smaller than a unit cube. This fact enables us to 
embed 3-simplexes in each unit cube such that  all vertices of the 3-simplexes 
are 1-points. We embed 3-simplexes into a unit cube following the rule that  the 
volume occupancy of the 3-simplexes in the cube is a maximum; this rule helps 
to uniquely determine the regions that should be occupied by the 3-simplexes. 
These embedded 3-simplexes can be combined into a digital polyhedron in the 
unit cube according to Definition 2. Such a digital polyhedron in a unit cube 
will be called a unit digital polyhedron. 

Let us consider all possible patterns of 1-points in a unit cube. Because each 
unit cube consists of eight lattice points and every lattice point is either a 1- 
or 0-point, the number of possible patterns is 256. By considering rotational 
symmetry, these patterns can be reduced to 23. These 23 possible patterns are 
shown in Fig. 4. 

It is sufficient to consider the unit digital polyhedra defined by these 23 
patterns. Table 1 shows the unit digital polyhedron defined by each 1-point 
pattern in a unit cube with respect to the 6-, 18- and 26-neighborhoods. Because 
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1-point 1-point p.atte.rns 
number in a unit cuoe 

0% 
1 -point 
number 

5 

6 

1-point patterns 
in a unit cuoe 

[~ a unit 
cube 

�9 a 1-point 

Fig. 4. Twenty-three possible patterns of 1-points in a unit cube; the set of all possible 
patterns is reduced by considering rotations in the 3D lattice space. 

Fig. 5. The exceptional case in which two adjacent unit digital polyhedra cannot be 
combined with each other, and the elimination of the polyhedra in this case. This case 
occurs only under the 18-neighborhood. 

the unit digital polyhedra created for the 18- and 26-neighborhoods are the same 
if the number  of 1-points in the unit cube is 6, 7 or 8, their lines in Table 1 are 
given in common. The correspondence between the pat terns of 1-points and the 
unit digital polyhedra is one-to-one, as shown in Table 1 for each neighborhood. 
Note that  the table shows the unit digital polyhedra only if the correspondence 
exists. For instance, a unit digital polyhedron for pat tern P8 is shown only in 
the case of the 6-neighborhood, because no pat tern except for P8 corresponds 
to a unit digital polyhedron. This yields the fact that  parts which are smaller 
than 3-simplexes, such as isolated points and sets of points forming needle-like 
and wall-like shapes, are excluded. 

3.2 C o m b i n i n g  U n i t  D i g i t a l  P o l y h e d r a  

According to Proposition 1, two adjacent unit digital polyhedra can be combined 
into a digital polyhedron if they share a face, edge or vertex. We can observe that  
all possible pairs of adjacent unit digital polyhedra in Table 1 can be combined 
without contradiction except for the case illustrated in Fig. 5 under the 18- 
neighborhood. In that  case, we retain the digital polygons in the horizontal plane 
of the base of the two unit cubes, and eliminate the rest of the unit polyhedra, 
as shown in Fig. 5. 
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1 -~ 'J i i i t  
number, 

4 

5 

6 

7 

8 

unit digital polyhedron 
N18 N26 N6 

Table  1. The look-up table which provides the one-to-one correspondence between a 
pattern of 1-points and a unit digital polyhedron for the 6-, 18- and 26-neighborhoods. 

boundary candidates of digital polyhedra 1 -point 
numoer N 6 N18 N26 

3 % 

P2g  

Table  2. The look-up table which provides the one-to-one correspondence between a 
pattern of 1-points and the boundary candidates of the combined digital polyhedra for 
the 6-, 18- and 26-neighborhoods. 
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If two adjacent unit digital polyhedra that  share a face are combined into 
a single digital polyhedron, their shared face is not a face of the new digital 
polyhedron, but is interior to it. The process of combining unit digital polyhedra 
defines a new set of digital polygons which constitute the boundary of the new 
digital polyhedron. After iteration of the process of combining a set of connected 
unit digital polyhedra, a set of digital polygons which constitute the boundary 
of the combined digital polyhedron is obtained. Vie can directly obtain the set 
of digital polygons which are the boundary candidates of the combined digital 
polyhedra by using Table 2. The arrow attached to each digital polygon in the 
table indicates the direction to the exterior of the combined digital polyhedron. 
Table 2, which is based on Table 1, is created so that  the exterior side of every 
digital polygon which is a boundary candidate must face the interior of the unit 
cube. Table 2 may create a pair of digital polygons whose vertices are the same 
but with arrows pointing in opposite directions. If such a pair arises, the polygons 
need to be erased from the set of boundary candidates. 

We thus obtain a set of digital polygons which are the boundary candidates 
of the digital polyhedra which should be created from the given V. These digital 
polygons have to be merged if they share edges and lie in a digital plane, and if 
their arrows point in the same direction. If the digital polygon S = ( x l x 2 . . .  xp) 
lies in the plane n �9 x = % n and ~ can be calculated by 

(=2 - - 1 )  x (=3 - - 2 )  
n =  i ( x 2 _ x l )  x ( x 3 - x 2 ) l  ' (9) 

T = n . x l  �9 (10) 

Let $1, $2, . . . ,  Sp be digital polygons in the plane n .  x = T. If Si = 
( , i x 2 . . .  xp) and Sj = (YlY~. ."  Yq) are adjacent, then there exists at least one 
sequence of vertices common to Si and Sj: 

" s  ~-- Y( t+r)@q,  " ( s + l ) @ p  = Y(t+r--1)@q, " ' ' ,  " (s+v)@p = Y t  (11) 

where a O b is the remainder of the division of a by b and r is greater than 1 and 
less than both p and q. Because the numbering of the vertices of a digital polygon 
must be counterclockwise, the orders of the common vertices are different in Si 
and Sj. If there is only one sequence of common vertices, the digital polygons 
Si and Sj can then be combined into a digital polygon denoted by 

S' = ( ' 1 . . .  x s - l Y t + l . . .  Y q Y t . . .  Y(t+r)@qX(s+r)@p'' '  Xp) . (12) 

Even if Si and Sj have more than one sequence of common vertices, the merg- 
ing process can be applied to each sequence; the result will be more than one 
sequence, representing a polygon with holes. Moreover, the merging process can 
be applied to all adjacent pairs of digital polygons in the same digital plane. 
Because the S' which is finally obtained may not be correctly represented as a 
digital polygon, the vertices of S' must be reduced such that  

xi+: - xi+l r s(xi+l - xi) (13) 

where s is a rational number. Finally, we obtain a set of digital polygons, S~ , . . . ,  
S~, for all digital planes. These polygons bound one or more digital polyhedra. 
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3.3 Algorithm 

The algorithm for generating digital polyhedra from a given set of lattice points 
V for the 6-, 18- and 26-neighborhoods is as follows: 

Algorithm 1 

inpu t :  A set of lattice points, V .  
o u t p u t :  Digital polyhedra, P1, P2, . . ,  Pk. 
begin 

1. For each unit cube generate a set of digital polygons P of boundary can- 
didates by lookup in Table 2. 

2. If the 18-neighborhood is considered, check whether the exceptional case 
illustrated in Fig. 5 occurs. If so, exclude these digital polygons from P 
and add the new fiat digital polygons in Fig. 5 to P.  

3. Calculate the vector n and the scalar T of a digital plane on which each 
digital polygon in P lies using (9) and (10). 

~. If two digital polygons consist of the same vertices and their ns  point in 
the opposite directions, exclude them from P. 

5. Select digital polygons with the same values of rt and 7 from P and merge 
them if they share edges. 

6. Extract connected components from P and number them as P1, P'2, . . . .  
Pk. 

end 

This algorithm leads to the next theorem. 

Theorem 1 Digital polyhedra are uniquely generated from V for a given neigh- 
borhood. 

Pro@ Table 2 in step 1 provides a one-to-one correspondence between V and P.  
The other steps in the algorithm provide one-to-one modifications of P.  There- 
fore, P1, P2, . . . ,  Pk are uniquely obtained from V. 

3.4 Properties of Digital Polyhedra 

According to Theorem 1, digital polyhedra are uniquely generated from V for 
each neighborhood. The relation between the digital polyhedra for the different 
neighborhoods is described in the following theorem. 

Theorem 2 If P[6], P[181 and P[26] are the digital polyhedra generated from a 
lattice-point set V for the 6-, 18- and 26-neighborhoods, respectively, then 

P[61 C P[181 C_ P[261 . (14) 

Proof. According to our method, P[6], P[18] and P[26] consist of 3-simplexes 
as given in Table 1, for the 6-, 18- and 26-neighborhoods, respectively. Table 1 
shows us the differences between the unit digital polyhedra depending on the 
neighborhoods, which are denoted by U[6], U[18] and U[26], in a refit cube. By 
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comparison between the shapes of U[61, U[181 and U[261, the following relation 
is established for all the 23 patterns in Fig. 4: 

5"[61 C_ U[181 _C U[261 . (15) 

Because for each unit cube (15) is satisfied and P[m] is a union of U[m]s where 
m = 6, 18, 26, the relation (14) is obtained. 

4 Implementa t ion  

The data set we used was obtained from a 3D single-photon emission computer 
tomography (SPECT) cardiac image. It includes 32 slices, each of which has 
64 x 64 pixels. Each pixel has 2-byte gray values. Because our method requires 
binary data, the data was binarized by Otsu's threshold method [16]. Figure 
6 shows some of the 32 slices of the binarized SPECT cardiac images. White 
and black pixels have values 1 and 0, respectively. White pixels are part of the 
myoeardium while black pixels fill the background. Figure 6 indicates that there 
is a hollow bounded by the myocardium. The three digital polyhedra generated 
from this data  set by our algorithm are shown in Fig. 7 for the 6-, 18- and 
26-neighborhoods. 

Fig. 6. Some of the 32 slices of the binarized SPECT cardiac image. 

Fig. 7. The results of applying our polyhedra generation algorithm to the SPECT 
cardiac image for the 6- (a), 18- (b), and 26-neighborhoods (c). 

5 Conclusions  

This paper has introduced an algorithm for uniquely generating polyhedra in a 
3D lattice space from a subset of the space, using the 6, 18- or 26-neighborhood. 
The three types of polyhedra have different shapes and satisfy the inclusion 
relations (14). Our algorithm was successfully implemented and applied to a 
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set of medical images. Our polyhedra are not 2-manifolds [12]. However, they 
can be modified into 2-manifolds if we use a combinatorial topology property, 
such as umbrella [12] or star [1, 13]. The first author expresses much thanks for 
the advice of Professor A. Rosenfeld at the Center for Automation Research, 
University of Maryland. This work was supported in part by National Library 
of Medicine Grant R29LM04692 and NIH grant 1R01HL42052. 
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