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A b s t r a c t  : The shape description of the surface of three-dimensional discrete objects is 
widely used for displaying these objects, or measuring some useful parameters. Elementary 
components of discrete surfaces, called surfeis, contain some geometric information, but at a 
scale that is too small with respect to the scale at which we actually want to describe objects. 
We present here a fast computational technique to compute the normal vector field of a 
discrete object at a given scale. Its time cost is proportional to the number of surfels at and 
little dependent on the scale. We prove that our algorithm converges toward the right value in 
the case of a plane surface. We also give some experimental results on families of curved 
surfaces. 

Index Terms - Discrete surfaces, surfeis, geometric invariant. 

1 Introduction 

Modern imaging techniques like MRI or confocal microscopy, produce 3-D digital images 
from real world scenes. A segmentation step followed by a labelling of the resulting binary 
image yields well identified 3-D discrete objects. The local orientations of their surface, and 
their areas characterise these objects. For example, they can be used for registration, 
recognition and medical diagnosis. We use here discrete surfaces composed of surfels. This 
kind of surface is still actively studied in arbitrary dimension [4], [9], but its detection, and 
properties are already well known in 3-D ( [6] ). The method described here uses the regular 
structure of the discrete surface as the support of functions of vectorial values that describe 
the geometry of the surface at the surfel scale. Then, we convolve recursively these values by 
a low pass filter, in order to get a regional average of these local geometrical values. The 
result is a geometrical value at a less local scale that describes better the real world object. 

One of the strength of this method is its low time complexity O(cy.~n + n),  where o" is the 

scale parameter of the calculus, and n the number of surfels of the object. 

This paper is organised as follows : basic definitions relative to the discrete surfaces used are 
first given, Then, the recursive calculus of a convolution product involving a summable 
function and a periodic function is recalled. Next, the algorithm is described. Afterwards, the 
proof of the convergence in the case of plane surfaces is given. We show that one pass method 
leads to errors is some cases. Two alternative methods are then presented, both correcting this 
failure. The time complexity is then estimated. Then come experimental results on families of 
analytic objects, as well as some direct applications and perspectives. 

2 Notations and basic definitions 

2.1 S u r f a c e s  o f  3 - D  d i s c r e t e  objects 

These definitions are mainly drawn from [4], [6] or [9]. The used notion of discrete surface, 
made of surfels, has been chosen for its regularity, and its analogy with continuous surfaces. 
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2.1.1 Main vectors of R 3, A ,  operations involving these vectors 

We consider the euclidian vectorial space R 3 and a direct orthonormal basis (O,c0~,c02,c03). 

We will use the sets of indices I3+ ={1,2,3}, I 3 : { 0 } u I 3 + w { - x l x e I 3 + } ,  and I:=I3/{o}. 
We define Vi ~ { [ } and eI~_,Si=O)i,(~i=-~i=-O) i, the null vector ~o, A= 6 i i e I  3 

A,={Sii ieI3 .} .  Finally, we define the rnultiplicative operator | from the vector cross 

I I 3 x 13 ~ 13 

product ^ :  @: (x,y)--> z= x| ^By" 

2.1.2 Voxel ,  binary scene 

Let x e R 3 . We denote xi the ith coordinate ofx. R 3 is divided into unit cubes called voxels by 

a set of planes orthogonal to the axes t P i j i e I 3 + , j e Z + ~ e t P ,  i = { x e R l x i = j } t .  We 

identify each voxel with its central point of Z 3. A binary scene of Z 3 is a function 

B:Z 3 --->{0,1}. We call B(v) the value of the voxel v. We note I(B)= B-l(1) and 

2.1.3 6 - n e i g h b o u r h o o d ,  1 8 - n e i g h b o u r h o o d ,  n -p a th ,  n-object, n-background 

Two voxels c and d are said to be 6-connected iff they share a face, that is c -  d e A. .  They 

are 18-connected iff they are 6-connected or if they share an edge : 3(~ 1 ,~2) e A2*, ~ r (~2 and 

61r  z and c - d = 5 ~ + O  2. For ne{6,18},  an n-path of length I [vo.v 1 ..... vH.v,] is a 

sequence of l+1 voxels so that Vje[O...1-1],vj etvj+ 1 are n-connected. Let E be a set of 

voxels. Let x and y be members of E. If there exists a n-path from x to y in E, we say that x 

and y are n-connected in E. A set E of voxels is n-connected iff V(a,b) e E 2 , a and b are 

n-connected in E. n-connected components of E are equivalence classes of the restriction to E 
of the equivalence relation << to be n-connected >>. If B is a binary scene, an n-object is an 

n-connected component of I(B). A n-background is an n-connected component of 0(B). 

2.1.4 Surfel, Surfel type, Surface, Boundary, Border, Bel 

A surfel is an oriented surface element. A surfel s is identified by the pair (vl,v2) of 6- 

connected voxels, of which it is the common face. Therefore, the vector n = v 2 - v~ = ~ e A. 

can take six distinct values. The type of the surfel s is T ( s ) = i .  We will call vl the start voxel 

of s, and v2 its end voxel. A surface is a set of surfels. The boundary of two disjoint of voxels 

is the set I$(E1,E2)=ts=(al,a2) s e ~  a n d a l e E l a n d a 2 e E 2 t .  A bel of a E1 and E2 

binary scene B is a surfel a = (c,d)so that c e I(B) and d e 0(B). The boundary of a binary 

scene is the set of its bels. A r ,~-border  is the boundary of two components, the first one 
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~r of I(B), the other one i t -connected of 0(B). In what follows we will only 

consider ~ -border,  where 1r is 6 and ,a, is 18. Such a border is proved to be connected, to 

have a well connected interior and exterior and to have the Jordan property. 

2.1.5 Edgel, Edgel's type, Bel adjacency, Surface graph 

We call edgel of the surfel a the pair e=(a,3i) with 3. ~A. andlil~lT(a)l. T(e )= i  is the ' l 
type of e. We also say that the surfel a=(c,d)meets the surfel a'=(c',d') at the edgel 

e = ( a , S )  i f f a  and a '  share an edge. The proposition 3.5 of [9] states that for any binary scene 

any bel b of this scene, and any edgel e of b, there is exactly 1 bel or exactly 3 bels that meet b 

in e ( Fig. 1). Two bels a =(c ,d)  et a'=(c',d') are said to be adjacent if they meet at an edgel 

e = (a,  ~) and if a '  is the only bel that meets a in e, or, in the case in which 3 bels meet a in e, 

i fa '  is the bel ( c , c+3)  ( see Fig. 1). We can say that a' is the neighbour of a at e or a' is the 

neighbour of a at ~.  This neighbouring relation define the notion of path on a surface and of 

connected component of a surface, as well as the notion of surface graph. Each surfel has 
exactly four neighbours ( one per edgel ). 

2.1.6 Slices, Slice contour, Slice contour function 

A slice of Z 3 is a set of voxels in which one coordinate is fixed, the two others being free. The 

slice denoted Trij is the set of voxels whose ith coordinate is j. Let b = (c,d) be abe l  of type i. 

belongs exactly to two slice contours denoted by CTr~ for i~  13/{IT(b1}. We c a l l / t h e  type It 

of the slice contour CTr~. These slice contours are images of slice contour functions, denoted 

FCTr~. The succession of slice contour bels is naturally defined by their adjacency relation 

IZ--+ B 
and their type: FCTri~: F , ,  with: FCTrI~(O)=b V z ~ Z ,  t = T ( z ) ,  and 

z ~ CTr,,htz) 

e = 3 t A CO i . FCTr~ is then recursively defined in the following way : 

FCTr,~,(z+ 1) is the adjacent bel of FCTr,.~(z) at e. 

FCTri~(z - I) is the adjacent bel of FCTr,.b(z ) a t - e .  

Slice contours of finite objects are periodic lists of adjacent bels whose start voxels are in a 
same plane. A slice can contain several slice contours as shows Fig. 2 for horizontal slices. 

2.2 R e c u r s i v e  ca l cu lus  of  a discrete convolution product 

Let P be the class of functions that are positive, even, increasing on ]-oo,0], decreasing in 

[0,+~[, with unit norm. Let glz be the restriction to Z of g ~ P.  L e t f b e  a periodic function of 

Z with values in R. We want Z = glz* f �9 For some functions, the convolution product can be 

strictly recursively computed. If not, it is most of the time possible to approximate the kernel 

ga by another one g ' a ,  whose convolution product is recursively computable. One can see [2] 

where is explained how to approximate a gaussian kernel by a sum of exponential as well as 
the recursive implementation of a non causal filter. The k order recursive calculus of 
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Fig. 1. 
Configurations of 
voxels and bels that 
meet the bel b at the 
edgel e. Grey 
squares are l-voxels, 
white one are 0- 
voxels. Seen in the 
plane containing b 
and e. 

Fig. 2. slices and slice contours of an object Fig. 3. Geometrical transformation 
along the three families of main planes, induced by the filtering operation. On 
Arrows show the orientation of the contours, each contour, orientation and length has 

been altered by the filtering : scales used 
(0, 5, 10, 20). See also [5] or [7] 

Z = glz* f is implemented by splitting g into a sum of two functions g- et g+, respectively null 

upon R +, and R~-. For each of these functions, we need only the k previous values of the 

convolution products as well as the current value o f f  and its k-1 previous values. At the start of 
the recursion, we can truncate g outside an appropriate interval and then compute the first k 
convolutions product in a non recursive way. One can too arbitrarily chose the recursion 
variables and start the recursion process. The variables will converge toward the right values 
after some iterations and we will then take into account the results produced. We denote by 

f R-->R ] 
E(g )=  ga ~P[craR*+ : x__>lg(_~l I the family of normalised functions deduced from g by 

Z-->R 

a scaling factor a .  We denote glz the normed restriction of g to Z: glz: z ---> :,~z2g(x)g(z) . 

3 Description of our method 

We first compute the surface graph of the 6-connected object thanks to a surface tracking 
algorithm (see [1] or [9]). Then, with a transversal of this graph, the length a well as a start 
surfel for each slice contour is determined. The next step is to associate to each surfel two 
elementary geometrical values that solely depends on the type of this surfel and on the slice 
contour the value correspond to (we recall that any bel belongs exactly to two slice contours). 
So, we get slice contour functions whose values are no more surfels, but geometrical. We can at 
least derive two ways to build the slice contour functions, and so to calculate the normal. They 
will be explained in 5. The recursive calculus of averages of these geometrical values is then 
done. As seen in 2.2, it is decomposed into two steps : an initialisation step, and a recursive 
step. We will suppose from here that the surface is planar and orthogonal to the vector 

(al,a2,a3), and without loss of generality that al z + az 2 + a3 z = 1. We will prove in 4.3 that for 

a discrete plane, the convolution product of any slice contour function converges toward the 
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average value when the scale of the convolution kernel increases toward infinity. The final step 
are local computations that compute from the two former values the value of the normal. 
Depending on the method we choose, we then have to do a second average of the normals in 
order to avoid drawbacks that occurs in some orientations or a another local computation. 

4 Convergence of the method for the surface of a discrete plane 

Although the usefulness of the technique is for curved finite discrete object, we will show here 
that it converge toward the continuous value for any surfel of a discrete plane when the scale 
increase toward infinity. 

4.1 Un i fo rmly  distributed functions 

Let ~ be the set of functions of Z---> R. We denote by f~u, f~, c ~ the class of functions 

whose distribution of values is uniform, called uniformly distributed : 

V f ~  ~e>O, 3 ! d = d ( f ) e R [ g a ~ Z ,  V k e N ,  d -  e < 1 .i=a+k~,f(i)<d-~ e . 
u'  k + l  k + l  i=a k + l  

Lenuna 1: Slice contour functions are uniformly distributed for plane surfaces and 

d ( f ) =  a,.  h( t )+ at.. h(t') if the surfels present on the contour are of type t and t '  and h is a 
a t + a t, 

scalar value associated to each surfel type. 

4.2 Convergence of the convolution product toward the average for uniformly 
distributed functions 

Lenuna 1 :  if f is uniformly distributed and if g �9 P then (7~__~Z = f *  gal z --= d ( f  ) and the 

1 
convergence speed is in - - .  

(7 

Proof of lemma 1 : For any golzlgo e E(g) we define the list o~ 7 

o~(g~,lz)i=(2i+l).(g,,iz(i)-g~qz(i+l)). So we have V i e Z ,  golz(i)=~, a(g~ and 
x=lil 2x + 1 

~.,g~lz(i)=l, that is ~ g~lz(i) = ----~~ ~ ' ~ . ~ - -  g~izx . Ifwe group the terms in Io~(g,,iz)~l we 

have ~ ~ a(g~lz)i +~ ' 
i = O x = - i  2i+1 -~=9~(g'rlz}i : f "  

+~ 

This transformation expresses a cut in horizontal slices of the sum ~.~g~lz(i). The discrete 
i = ~  

I( )1  convolution product X = f *  golz can then be rewritten in function of the a g~Iz ~ ~N 
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X(t)= t)= ~'(f(t-y)'g~ . . . .  lyl 2x + 1 
/ 

.- ~ D..+. ) 
group the terms in Ia(golz)ili~N, This yields : Z(t)= ~ |2--~1 Wenow 

x = t - y  

Moreover, i f f e ~  u, 3e>0,  Vs~Z, d(f)- .kS ~,f(t-x)<_ d(f)+ .k.  So, for 
x=s 

each term of the sum over y, we have : 

( e I 2y+l  < __c~(g<rlz)r x=t+v~f(t_x)< ot(g<~lz).(d(f )+2-~'~).2-'-~1e 1 2y+1 c~(g~lz)r " d(f)-2--'~ "2y+l - 2y+l  .... y - 

d(f).ot(gal z)r e.o~(gal e)r _< o:(g,lz),, x~(t_x) < d_ (f).o~(galz)~ -t e" ~(galz)r 
2y+l  2y+l  ,:,_y 2y+l  

+~ 

and by summing over y and applying y~oa(g~lz)~= = 1, we obtain : 

~.~ I of(galz)y .... y +=e. ct(golz) 
+=e'ct(g'rlz) < Z(t)= �9 ~ f ( t - x )  < d(f)+ E 2 y + l  y d( f ) -2  2 y + ~ -  ~ 2y+ l  
y=0 X=l -y  y=0 

d(f)-e ~ 2y+l < Z(t) <<- d(f)+e'~=o 2-"~1 

We recognise golz(O)=y~o. 2 - - ~ ,  and the previous expression becomes: 

d( f )- e. g,,iz (0)< X(t) < d(f ) + e. g<,lz (0). 

We now need the following lemma that can be proved by elementary ways : 

f(o) - s  ro < f(o) 
Lemma 1.1: Let f e P  and f<,EE(f) .  We have ty+f (0 )<  <,lz~ ' - t r - f ( 0 )  or more 

o" 
generally VzCZ'cr+ f(O)--" f:(z)<-f~tz(z)<- a-f(O)~r f~(z). 

d(f)-e, goiz (0)<- Z(t)-< d(f)+e, goiz (0) 
Finally, this lemma: d( f )-e. ffg(;lO) < Z(t) < d( f )+e. g(O) 

- 

The convolution product converges in 1 toward d(f ). r 

End of proof of lemma 1. 
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4.3 Conclusion : Convergence for tangents 

! 
The convolution product of vector that depends only on the type of surfels converges in 

(7 

toward their average value. We have seen this for each component of the vector. For example, if 
these vectors are unit tangents, and then we obtain the tangent to the slice contour. 

5 Methods proposed 
Two direct methods are first proposed, that appear to give some erroneous results for some 
surface orientations. We then propose some improvements the correct this drawback. 

5.1 One step methods 

Two similar methods that uses only one averaging and one local calculus are presented. In the 
first one, drawn from classical differential geometry, the averaged value depends on the slice 
contour type, not the local operation. Contrarily, in the second one, the averaged value is the 
normal to the surfel, for both slice contours, but the final calculus depends on the surfel type. 

5.1.1 First method 

When two curves on a regular surface intersect at a point P, and are not parallel at this point, 
then the surface normal is colinear to the vector cross product of their tangents. Hence, an idea 
is to compute the tangent of each slice contour and then to perform a cross product. More 
precisely, for each surfel s whose type is t, and each slice contour it belong to, we associate the 

Z - ~  R 3 
value fs4: z -~ 6~(.roFcrr~.,(z).j ) that expresses a elementary move through the surfel when one 

walks along the slice contour. Therefore, fsj*g,~ converges toward the vector whose jth 

coordinate is null, and whose coordinate n ~ 1 7 4  is d(f)=l_~(t,J)[~ a, and whose 
(t,j) al +a ,, 

1| 1| (t ' ,jl  th coordinate is d( f~ -  a~-------2-'. The same calculation applies for the other 
' ' |  a,+a c 

slice contour whose type is t'. The vector cross product of the two previous vectors yields, for 

example with (t,t', j )  = (1,2,3) : 

[ / a 3 
- - ~  a l  + a2 

a 1 -I-a 3 

a I --ha 2 
a l  0 

al at 

a 1 + a 2 al + a 3 

a 1 a2 

a l + a  3 a l  + a  2 

a3 a 1 

a t + a  3 a t  + a  2 

a t The general expression is (a t + a c )  (% + a,.) 

a /a/ 
- -  m a 2  . 

(a~+a2)-(a ~ +a3) a3 

a 1 a l  

_ _ .  a 2 = / ' t  t . a 2 

~a3 ) a3 

for a surfel of type is t. 
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5.1.2 Second method 

For each slice contour we calculate a vector contained in the slice plane and that is orthogonal 
to the contour that pass through the surfel. For both contours the value convolved is the unit 
normal vector of the surfel. On a surfel of type t, the limit of the convolution product is v or v'  
depending on the slice contour. For the one whose type is t '  the coordinates of v are 

a t at.. v t = ~ , v c = 0 and v c, = ~ .  For the surfel whose type is t " ,  the coordinates 
a t + at,. a t + at,. 

a t a t , , are v '  t - - ,  v' t , = ~  and Vc, = 0 "  We then compute v "  this way:  
a~ + a t, a t + a t, 

p, Vt 'V t '~ lZ t 'V t  t VI t  l - - l f l  v ' ' ' ' So we 
v t -  2 --Vt'~)t~ t ' -~-Vt 'Vt  ''f" t" t ' = V t ' V t  '~ V ~ t " = V t ' V t " - I - V I ' V t " = V  t 'Vt '"  

a t �9 a t a t. �9 a t at . , .  a t 
have:  v " , =  (a,  + a c ) . ( a  t +at. .  ) ' v ' ' c =  (a, + a c ) . ( a  t +at, ,  ) a n d  V " c . = - ( a  t + a c ) . ( a t  + a t , . ) .  T h e  

final value obtained is the same as in the first method. 

5.1.3 I n s u f f i c i e n c y  o f  t he  one  s tep  m e t h o d  in s o m e  p a r t i c u l a r  o r i e n t a t i o n s  

First, we notice that the frequency of a surfel of type t is proportional to the tth component of 
the discrete plane normal. We examine here angular errors of the normal calculated with the 
first one step methods. Tangent vectors will be considered as the sum of two vectors. The first 
one is the ideal tangent vector of which the 1-norm (sum of the absolute values of the 
coordinate) is 1, (because the 1 norm of the initial geometrical values are one and the 

convolution kernel is of norm 1). The second one is an error term e i . So we have t~ = T~ + e~. 

T h e n : t  i A t j = ( ~ + e i ) A ( T / + e J ) = T  i A T / + T  I A e j + T / t , e  i + e ~ A e i = N  0 + E  with N,~=T iAT/  

N 0 
and E = T  i Aej + T / ^ e  i +e  i Ae~. Angular accuracy is an increasing function of N "  The 

a~ The euclidian norm of each 
a j ) . ( a g  

norm of the normal on surfel of type k is  n k - (a  k 
+ai) + 

1 Nu of the tangents is between ~ -  and 1, but can be small if  tangents are nearly parallel. 

This case appears when the surfel of the calculus is of a sparse type. Therefore the one step 
method leads to a big error if  the normal of the plane contains a near zero coordinate, even if 

1+ a__~ 

the error on tangents is small. Moreover, we have n--~-k = aj . Thus, the more frequent in the 
nj l + a ~  

plane the surfel is, the greater is the norm of the calculated normal, and so the greater is the 
precision. In discrete planes and straight lines, spare surfels are always isolated. One can show 
that the norm of the vector cross product calculated on a surfel that is not of the rarest kind is 

not less than - ~  = 0,408, and that the one calculated at surfel of the most frequent type is not 

less than ~ = 0,433. We will now infer from these remarks some calculus methods that 
4 

guarantee a small angular error whatever the surfel type is. 
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5.2 Improved one step methods 

A simple correction is to check the norm of the normal and, if it is lower than some fixed value, 

1 
for example, to take for final value a linear combination of the normal obtained on 

1 
adjacent surfels, that have certainly a norm greater than - ~ - .  One can also check if the norm 

ratio between the surfel and some surfels in its neighbourhood is lower than a fixed value. 

5.3 Two steps method 

Another possibility is to perform another recursive calculus to get an average of the normal 
obtained at the first step. This is correct because in each of the slice contour, the average norm 

of the calculated normal ai aj 1 �9 nl + .nj admits the lower bound - ~ - .  The average of 
a~ + a j  a i + a j  

1 ( a i a j  a i a k ) 
this value for the two slice contours - - I ~ .  n~ + �9 n j  + . n i + �9 n~ has 

J 2~ .a  i + a j  a i + a j  a i + o  k a i +ate 

0,429 for lower bound, for rarest surfels. This value increase for more frequent surfels. This 
two steps method produces the better experimental results on curved object and will be 
evaluated in section 7. An essential difference with the previous one step methods is that it take 
into account not only surfels of the two slice contours, but also those of a 2D neighbourhood 
around the central surfel. Thus the method is not very sensitive to noise. 

The previous corrections guarantee that as the errors made in the calculus on the tangents 
decrease, then the angular error on the final normal decreases too, for any type of surfel. 

6 Evaluation of the algorithmic complexity 

If the object is in a cube with n voxels edges, the number of slice contours is roughly 3. n ,  and 

its number of surfels is around n 2 . We want to compute the normal field at the scale o ' .  The 

cost of the initialization of the recursive calculation is proportional to the number of slice 
contours and to the scale : O(o-. n).  The recursive computation needs a constant computational 

amount for each surfel. There are then only local computations. If the two steps method is used, 

have to double this cost. To conclude, the cost of our method is O(o-. n + n 2). w e  just 

7 Experimental results and applications 

Applications of geometric fields of the surface of an object are numerous and important since 
such values are the basis of most of the recognition or interpretation processes. Moreover, it is 
useful to know the limits of the calculus algorithms used, especially when the values computed 
are used to measure real world quantities. 

7.1 Angular errors 

We have done several calculus upon families of spheres and toruses, using the two steps 
method and varying the scale of the filter used for each step. We have first noticed that the 
nature of the low pass filter used had little consequence on the quality of results. So, it is 
possible to use a first order recursive filter that implements the convolution product by the 
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1 Ixl function - - . e  -~  . Some scales produce best results for mean and maximal angular errors. 
G 

These scales depend on the surface of the object. For planes surfaces, the larger the scales are, 
the better the results. For curved surfaces, these optimal scales depend on the curvature of these 
surfaces. As we want a local value, if we increase the scale, we take into account a wider 
neighbourhood of surfels and if the distribution of surfels is not uniform, we increase the error. 
On the other hand, if  we decrease the scale, the value on the central surfel becomes 
predominant, and we get a value that corresponds to the structure that describes the object, but 
not to the object itself. We notice that for the sphere the average error is smaller than the 
variation of the normal orientation along a single surfel. The accuracy of the method is at the 
scale of the surfel for a sphere, But the case of sphere is advantageous since its slice contours 
are convex, and that we then take advantage of the local symmetry. This is not the case for the 
torus for which, compared to a sphere with equal curvature we get a greater error. But this does 
not break the rule : the smaller the curvature, the smaller the angular error, and the greater the 
scale leading to the minimal error. In other words, we can say that the accuracy increases when 
the discretization step decreases. The error considered is the angle in degree between the 
normal calculated by our algorithm and the theoretical normal at the centre point of the surfel. 

4 ~ Ra~usofthe,sphere 

10 20 30 40 50 

Fig. 4. Scales leading to the 
minimal maximum angular error 

(sum of the scale of each step) 

7.1.1 Results for spheres 

6,5 

5,5 

4,5 

3,5 

"--'&-- Minimal average error 
Exponential filter 

--4N-- Minimal maximal error 

"--~ - -  Minimal average error Gaussian filter 
.... ' ~<<~ Minimal maximal error 

Variation of the nomal over one surfeI 

2,5 

0,5 I ,  I I , 

10 Radius 20 in voxel. 30 40 50 

Fig, 5 

For spheres, each orientation is equally represented, and the problem of discretization 
orientation does not exist. Scales that lead to a minimal error are roughly identical for the two 
steps. We recall that the first step consist in calculating the tangents of each slice contour 
passing through a surfel and that the second step produce an average of the normals obtained by 
cross product. We say that the scale of the calculus is the sum of the scales of each step. 

7.1.2 Results for toruses 

These toruses are revolution surfaces around the Z axis generated by circle of rt, called small 
radius. This circle is in the Oz Ox plane. Its centre is at a distance r~, called big radius, of the Z 
axis. The curvature of a rl r2 torus correspond to the one of a rl sphere. The results are not as 
good as those of the spheres because slice contours have inflexion points. Nevertheless, they 
follow the rule given in 7.1. The value of the minimum error in Fig. 6 is repeated in Fig. 7. 
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Fig. 6. maximal angular 
errors for a 10 20 toms for the 
scale of each step 

Little and big radius of the 
torus. 

Scales leading to the smaller 
angular error. 

maximal and average angular 
error. 

10 20 

2 3 

11,41 4,34 

20 40 

4 4 

7,76 2,84 

Fig. 7. Error for toruses. 
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Fig. 8 

Fig. 9. Shading of a cortical 
surface using the normal 
orientations. 

Fig. 10. Normal are computed for Fig. 11. Thresholding of the 
two different scales, a global one, previous picture. Cortical sulci and 
that ignore the ridges and valleys of gift appear clearly. 
the surface, and a smaller one that 
take them into account. The 
surface is brighter where the two 
orientations correspond. 

7.2 Area calculus 

Another application is the computation of the area of a discrete surface. If we do this by 

counting the number of surfels, the result for a plane surface may be from 1 to ~ times the 

right value, depending on the orientation of the plane. For a discrete sphere of radius r ( the 

unit is the discretization step ), the area will roughly be of 6./lr. r 2 , whereas the right value is 

around 4- ~-  r z . A much better value is obtained by noticing that the contribution of a surfel to 

the total area is the area of its projection on its normal plane. For spheres, the relative error 
with this technique is less than 0.1%, and for toruses, around 1%. Since the area of each surfel 
is constant, the calculus of an area is the sum of the scalar product of the normal of the surface 
with the normal of each surfel. Since only one component of a normal to a surfel is non zero, we 
just have to sum the corresponding components of the calculated surface normal. 

7.3 Applications 

A straightforward application of the normal field of the surface, illustrated Fig. 9 is the display 
of voxel objects, with object space shading. The precise structure of the object is preserved, and 
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no smoothing artefact due to image space shading is introduced. It is also possible to compare 
orientations of two normal fields computed at two different scales to exhibit some details 
specific to a scale. This is shown on a brain in Fig. 10 and Fig. 11. 

8 Conclusion and perspectives 

We have described an accurate and efficient technique for compute the normal field of a 
discrete surface made of surfels. It depends on a scale parameter. Both time and space 
complexity is linear with respect to the number of surfels. The calculus of the normal field of 
the surface of an human brain composed of 170000 surfels takes ten seconds on a SUN SPARC 
10. We have proved the convergence of the method at each surfel for a plane surface. Our 
method differs from the ones proposed in [8] where partial derivatives of the grey level image 
are used. We here just use the discrete surface of the object, a two dimensional structure that 
has most of the time a far less cardinality than the 3-D volume enclosing the object. Our 
method is fast enough to be useful in an interactive tool of manipulation of discrete surfaces, or 
in a multi-scale context. The interest of such a tool should be greatly improved if higher order 
differential invariants like curvatures were available. We can consider the surface as a classical 
2-D grey level image where the grey level is a geometrical value. It is then possible to adapt 
some operators working on classical 2-D grey level images to do some segmentation work. Our 
goal is indeed to segment complex surfaces like human cortex surfaces by mean of local 
geometrical properties. We have seen that the comparison of the local orientation of the surface 
computed at two different scales could be a good starting point to achieve this project. 
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