Skip to main content

Coupling the advection and the chemical parts of large air pollution models

  • Conference paper
  • First Online:
Applied Parallel Computing Industrial Computation and Optimization (PARA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1184))

Included in the following conference series:

  • 176 Accesses

Abstract

The discretization of long-range transport models leads to huge computational tasks. The advection (the transport due to the wind) and the chemistry are the most difficult parts of such a model. Normally splitting procedures are used and one tries to develop optimal methods for the advection part and for the chemistry part. Some results obtained in the attempts to design good sets of methods which work well for the coupled advection-chemistry sub-model will be presented. Runs on a Silicon Graphics POWER CHALLENGE computer indicate that the methods perform reasonably well and high speed-ups can be achieved with minimal extra efforts. However, more efforts are needed to get closer to the peak performance of this computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bott, A., ”A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes”, Mon. Weather Rev., 117(1989), 1006–1015.

    Google Scholar 

  2. Brandt, J., Mikkelsen, T., Thykier-Nielsen, S. and Zlatev, Z., ”Using a combination of two models in a tracer model”, Mathematical and Computer Modelling, Vol 23 No. 10 (1996), 99–115.

    Google Scholar 

  3. Brandt, J., Wasniewski, J. and Zlatev, Z., ”Handling the chemical part in large air pollution models”, Appl. Math. and Comp. Sci., 6 (1996), 101–121.

    Google Scholar 

  4. Chock, D. P., Winkler, S. L. and Sun, P., ”Comparison of stiff chemistry solvers for air quality models”, Environ. Sci. Technol., 28 (1994), 1882–1892.

    Google Scholar 

  5. Crowley, W. P., ”Numerical advection experiments”, Mon. Weath. Rev., 96 (1968) 1–11.

    Google Scholar 

  6. Deuflhard, P., Nowak, U. and Wulkow, M., ”Recent development in chemical computing”, Computers Chem. Engng., 14 (1990), 1249–1258.

    Google Scholar 

  7. Forester, C. K., ”Higher order monotonic convective difference schemes”, J. Comput. Phys., 23(1977), 1–22.

    Google Scholar 

  8. Fornberg, B., ”A practical guide to pseudospectral methods”, Cambridge Monographs on Applied and Computational Mathematics, Vol. 1, Cambridge University Press, Cambridge-New York-Melburne, 1996.

    Google Scholar 

  9. Hertel, O., Berkowicz, R., Christensen, J. and Hov, Ø., ”Test of two numerical schemes for use in atmospheric transport-chemistry models”, Atmos. Environ., 27A (1993), 2591–2611.

    Google Scholar 

  10. Hesstvedt, E., Hov, Ø. and Isaksen, I. A., ”Quasi-steady-state approximations in air pollution modelling: comparison of two numerical schemes for oxidant prediction”, Internat. J. Chem. Kinetics, 10 (1978), 971–994.

    Google Scholar 

  11. Holm, E., ”High-order numerical methods for advection in atmospheric models”. PhD Thesis, Department of Meteorology, Stockholm University, 1993.

    Google Scholar 

  12. Hov, Ø., Zlatev, Z., Berkowicz, R., Eliassen, A. and Prahm, L. P., ”Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions”, Atmos. Environ., 23 (1988), 967–983.

    Google Scholar 

  13. Marchuk, G. I., ”Mathematical modeling for the problem of the environment”, Studies in Mathematics and Applications, No. 16, North-Holland, Amsterdam, 1985.

    Google Scholar 

  14. McRae G. J., Goodin, W. R. and Seinfeld, J. H., ”Numerical solution of the atmospheric diffusion equations for chemically reacting flows”, J. Comp. Phys., 45 (1984), 1–42.

    Google Scholar 

  15. Molenkampf, C. R., ”Accuracy of finite-difference methods applied to the advection equation”, J. Appl. Meteor., 7 (1968), 160–167.

    Google Scholar 

  16. Odman, M. T., Kumar, N. and Russell, A. G., ”A comparison of fast chemical kinetic solvers for air quality modeling”, Atmos. Environ., 26A (1992), 1783–1789.

    Google Scholar 

  17. Peters, L. K., Berkowitz, C. M., Carmichael, G. R., Easter, R. C., Fairweather, G., Ghan, S. J., Hales, J. M., Leung, L. R., Pennell, W. R., Potra, F. A., Saylor, R. D. and Tsang, T. T., ”The current state and future direction of Eulerian models in simulating the tropospherical chemistry and transport of trace species: A review”, Atmos. Environ., 29 (1995), 189–221

    Google Scholar 

  18. Petzold, L. R., ”Order results for implicit Runge-Kutta methods applied to differential-algebraic systems”, SIAM J. Numer. Anal., 23 (1986), 837–852.

    Google Scholar 

  19. Shieh, D. S., Chang, Y. and G. R. Carmichael, G. R., ”The evaluation of numerical techniques for solution of stiff ordinary differential equations arising from chemical kinetic problems”, Environ. Software, 3 (1988), 28–38.

    Google Scholar 

  20. Skelboe, S. and Zlatev, Z., ”Using partitioning in the treatment of the chemical part of air pollution models”, Springer, Berlin, to appear.

    Google Scholar 

  21. Verwer, J. G. and Simpson, D., ”Explicit methods for stiff ODE's from atmospheric chemistry”, Appl. Numer. Math., to appear.

    Google Scholar 

  22. Zlatev, Z., ”Computer treatment of large air pollution models”, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Waśniewski Jack Dongarra Kaj Madsen Dorte Olesen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandt, J., Dimov, I., Georgiev, K., Wasniewski, J., Zlatev, Z. (1996). Coupling the advection and the chemical parts of large air pollution models. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds) Applied Parallel Computing Industrial Computation and Optimization. PARA 1996. Lecture Notes in Computer Science, vol 1184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62095-8_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-62095-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62095-2

  • Online ISBN: 978-3-540-49643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics