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A b s t r a c t .  For an undirected graph G the k-th power G ~ of G is the 
graph with the same vertex set as G where two vertices are adjacent iff 
their distance is at most k in G. In this paper we consider LexBFS- 
orderings of chordal, distance-hereditary and HHD-free graphs (the 
graphs where each cycle of length at least five has two chords) with re- 
spect to their powers. We show that  any LexBFS-ordering of a chordal 
graph is a common perfect elimination ordering of all odd powers of 
this graph, and any LexBFS-ordering of a distance-hereditary graph is 
a common perfect elimination ordering of all its even powers. It is well- 
known that  any LexBFS-ordering of a HHD-free g-raph is a so-called 
semi-simplicial ordering. We show, that  any LexBFS-ordering of a H H D -  
free graph is a common semi-simplicial ordering of all its odd powers. 
Moreover we characterize those chordal, distance-hereditary and H H D -  
free graphs by forbidden isometric subgraphs for which any LexBFS- 
ordering of the graph is a common perfect elimination ordering of all its 
nontrivial powers. As an application we get a linear time approximation 
of the diameter for weak bipolarizable graphs, a subclass of HHD-free 
graphs containing all chordal graphs, and an algorithm which computes 
the diameter and a diametral pair of vertices of a distance-hereditary 
graph in linear time. 

1 I n t r o d u c t i o n  

Powers  of graphs  play an impor t an t  role for solving cer tain problems re la ted 
to dis tances  in graphs  : p -cen te r  and  q-dispers ion  (el. [7, 3]), k - d o m i n a t i o n  
and k -s tab i l i ty  (of. [8, 3]), d iamete r  (of. [13]), k -colour ing  (cf. [26, 20]) and 
approx ima t ion  of bandwid th  (el. [27]). For instance,  consider the  k-co lour ing  
problem.  The  vertices of a g raph  have to be coloured by a minimal  number  of 
colours such t h a t  no two vertices a t  dis tance a t  mos t  k have the same eolour. 
Obviously,  k-colour ing  a graph  is equivalent to colour (in the classical sense) 
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its k-th power. It is well-known that  the colouring problem is IN]P-complete in 
general. On the other hand, there are a lot of special graph classes with certain 
structural properties for which the colouring problem is efficiently solvable. One 
of the most popular class is the one of chordal graphs. Here we have a linear 
time colouring algorithm by stepping through a certain dismantling scheme - -  
the so-called perfect elimination ordering - -  of the graph. So it is quite natural 
to consider graph classes for which certain powers are chordal. 

In the last years some papers investigating powers of chordal graphs were 
published. One of the first results in this field is due to DUCHET ([18]) : If G k is 
chordal then G k+2 is so. In particular, odd powers of chordal graphs are chordal, 
whereas even powers of chordal graphs are in general not chordal. Chordal graphs 
with chordal square were characterized by forbidden configurations in [28]. 

It is well-known that  any chordal graph has a perfect elimination ordering 
which can be computed in linear time by Lexicographic Breadth-First-Search 
(LexBFS, [32]) or Maximum Cardinality Search (MCS, [33]). Thus each chordal 
power of an arbitrary graph has a perfect elimination ordering. A natural ques- 
tion is whether there is a common perfect elimination ordering of all (or some) 
chordal powers of a given graph. The first result in this direction using minimal 
separators is given in [17] : If both G and G 2 are chordal then there is a common 
perfect elimination ordering of these graphs (see also [4]). The existence of a 
common perfect elimination ordering of all chordal powers of an arbitrary given 
graph was proved in [3]. Such a common ordering can be computed in time 
O(IVIIEI) using a generalized version of Maximum Cardinality Search which 
simultaneously uses chordality of these powers. 

Here we consider the question whether LexBFS, working only on an initial 
graph G, produces a common perfect elimination ordering of chordal powers of G. 
Hereby we consider chordal, distance-hereditary and HHD-free graphs as initial 
graphs. Recall, that  in chordal graphs every cycle of length at least four has a 
chord and in distance-hereditary graphs each cycle of length at least five has two 
crossing chords. HHD-free graphs can be defined as the graphs in which every 
cycle of length at least five has two chords. Analogously to chordal graphs, HHD- 
free graphs can be dismantled via a so-called semi-simplicial ordering which can 
be produced in linear time by LexBFS (of. [25]). Since a semi-simplicial ordering 
in reverse order is a perfect ordering (in sense of CHVATAL), HHD-free graphs 
are perfectly orderable, and hence they can be coloured in linear time (of. [10]). 

2 P r e l i m i n a r i e s  

Throughout this paper all graphs G = (17, E) are finite, undirected, simple (i.e. 
loop free and without multiple edges) and connected. 

A path is a sequence of vertices vo , . . . ,Vk  such that  vivi+ 1 E E for i = 
0 , . . . ,  k - 1; its length is k. As usual, an induced path of k vertices is denoted 
by Pk. A graph G is connected iff for any pair of vertices of G there is a path in 
G joining both vertices. 
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The distance dG(u, v) of vertices u, v is the minimal length of any pa th  con- 
necting these vertices. Obviously, dG is a metric on G. If no confusion can arise 
we will omit the index G. An induced subgraph H of G is an isometric subgraph 
of G iff the distances within H are the same as in G, i.e. 

vx, y e V(H)  : d (x,y) = dG(x,y). 

The k-th neighbourhood Nk(v) of a vertex v of G is the set of all vertices of 
distance k to v, i.e. 

:= {4 e v :  dc( ,v) = k}, 

whereas the disk of radius k centered at v is the set of all vertices of distance at 
most k to v : 

k 

Da(v,k)  := {u e V :  d (u,v) < k} = U 
i : 0  

For convenience we will write N(v) instead of N 1 (v). Again, if no confusion can 
arise we wilt omit the index G. The k-th power G k of G is the graph with the 
same vertex set V where two vertices are adjacent iff their distance is at most 
k. If k > 2 then G k is called nontrivial power. 

The eccentricity e(v) of a vertex v C V is the maximum over d(v,x), x C V. 
The minimum over the eccentricities of all vertices of G is the radius tad(G) of 
G, whereas the maximum is the diameter diam(G) of G. A pair x, y of vertices 
of G is called diametral iff d(x, y) = diam(G), 

Next we recall the definition and some characterizations of chordal graphs. An 
induced cycle is a sequence of vertices v0~.. . ,  vk such that  v0 = vk and vivj E E 
iff l i -  Jl = 1 (modulo k). The length. ]C I of a cycle C is its number of vertices. A 
graph G is chordal iff any induced cycle of G is of length at most three. One of the 
first results on chordal graphs is the characterization via dismantling schemes. 
A vertex v of G is called simpliciat iff D(v, 1) induces a complete subgraph of 
G. A perfect elimination ordering is an ordering of G such that  vi is simplicial 
in Gi := G({vi , . . .  ,vn}) for each i = 1 , . . .  ,n. It  is well-known that  a graph is 
chordal if and only if it has a perfect elimination ordering (cf. [21]). Moreover, 
computing a perfect elimination ordering of a chordal graph can be done in linear 
t ime by Lexicographic Breadth-Fi rs t -Search  (LexBFS, [21]). To make the paper  
self-contained we present the rules of this algorithm. 

Let sl = (al, . .~,ak) and s2 = (bl , . . . ,b~)  be vectors of positive integers. 
Then sl is lexicographically smaller than s2 (sl < s2) iff 

1. there is an index i < min{k,l} such that  a~ < b~ and aj = bj for all j = 
1 , . . . , i -  1, or 

2. k < l and ai =- bi for all i = 1 , . . . , k .  

If s = (al,  �9 �9 ak) is a vector and a is some positive integer then s + a denotes 

the vector (a l , . . . ,  ak, a). 
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procedure LexBFS 
I n p u t  : A graph G = (V, E).  
O u t p u t  : A LexBFS-ordering c~ = ( v l , . . . ,  v,~) of V. 

b e g i n  fo ra l l  v E V do l(v) := 0; 
for n := IVI d o w n t o  1 do  

choose a vertex v E V with lexicographically maximal label l(v); 
define a(n) := v; 
fora l l  u E Y A N(v)  do l(u) := l(u) + n; 
v :: v \ 

endfor; 
end .  

In the sequel we will write x < y whenever in a given ordering of the vertex 
set of a graph G vertex x has a smaller number than vertex y. Moreover, x < 
{ y l , . . . , y k }  is an abbreviat ion for x < Yi, i = 1 , . . . , k .  

In what follows we will often use the following proper ty  (cf. [25]) : 

(P1) 
If a < b < c and ac E E and bc ~ E then there exists a vertex d 
such that  c < d, db E E and da ~ E. 

L e m m a  1. (1) Any LexBFS-ordering has property (P1). 
(2) Any ordering fulfilling (P1) can be generated by LexBFS. 

Proof. (1) We refer to the well-known proof in [21]. 
(2) Let a = ( v l , . . . , v n )  be an ordering fulfilling (P1) and suppose that  

(v i+ l , . . .  ,vn), i _< n -  1, can be produced by LexBFS but not (v i , . . .  ,v~), 
i.e. vi cannot be chosen via LexBFS. Let u be the vertex chosen next by 
LexBFS. Then there must  be a vertex w > vi adjacent to u but not to vi. 
We can choose w rightmost in a. Thus in a we have u < vi < w, uw E E 
and wvi ~ E. Now (P1) implies the existence of a vertex z > w adjacent 
to vi but  not to u. Since w is chosen rightmost all vertices with a greater 
number  than w which are adjacent to u are adjacent to vi too. Hence the 
LexBFS-label  of vi is greater than tha t  of u, a contradiction. [] 

3 C h o r d a l  G r a p h s  

A set S C_ V is m-convex (monophonically convex) iff for all pairs of vertices 
x, y of S each vertex of any induced path  connecting x and y is contained in S 
too. 

L e m m a  2 [19]. I f  G is a chordal graph and ( v l , . . . ,  vn) is a perfect elimination 
ordering of G then V ( Gi ) is m-convex in G and, in particular, Gi is an isometric 
subgraph of G, for every i = 1 , . . . ,  n. 

Using proper ty  (P1), m-convexi ty  and isometricity of Gi in G we can prove 
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T h e o r e m  3. For a chordal graph G every LexBFS-ordering of G is a perfect 
elimination ordering of each odd power G 2k+1 of G. 

Since we do not use chordality of odd powers in the proof of the above 
theorem we reproved that  odd powers of chordal graphs are again chordal. 

T h e o r e m  4. If G is a chordal graph which does not contain the graphs of Figure 
1 as isometric subgraphs then every LexBFS-ordering of G is a perfect elimina- 
tion ordering of each even power G 2k, k > 1, of G. 

1 1 

7 5 ? 6 

Fig. 1. Chordal graphs labeled by a LexBFS-ordering such that vertex 1 is not sim- 
plicial in G 2. 

C o r o l l a r y  5. If  G is chordal and does not contain the graphs of Figure 1 as 
isometric subgraphs then all powers of G are chordal. 

Ptolemaic graphs (cf. [9, 24]) are the graphs fulfilling the ptolemaic inequality, 
i.e. for any four vertices u, v, w, x it holds 

d(u, v)d(w, x) < d(u, w)d(v, x) + d(u, x)d(v, w). 

In [24] it was shown that  the ptolemaic graphs are exactly the chordal graphs 
without a 3-fan (cf. Figure 4), i.e. the distance-hereditary chordal graphs (cf. 
[2]). For the well-known class of interval graphs we refer to [211 . 

C o r o l l a r y  6. If G is a ptolemaic or interval graph then any LexBFS-ordering 
of G is a common perfect elimination ordering of all powers of G. 

C o r o l l a r y  7. [f G is a ptolemaic or interval graph and v is the first vertex of a 
LexBFS-ordering of G, then e(v) = diam(G). 

Proof. Let a be a LexBFS-ordering of G, v be the first vertex of a and k its 
eccentricity. By Corollary 6 a is a perfect elimination ordering of the power G k 
of G. In particular, v is simplicial in G k. Thus G k is complete. [] 

Hence the diameter and a diametral pair of vertices of a ptolemaic or interval 
graph can be computed in linear time by only using a LexBFS-ordering. 
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4 HHD-free  Graphs 

Note that  a vertex is simpliciaI if and only if it is not midpoint of a P3. In [25] 
this notion was relaxed : A vertex is semi-simplicial iff it is not a midpoint of a 
P4. An ordering (Vl, �9 �9 v~) is a semi-simplicial ordering iff vi is semi-simplicial 
in Gi for all i = 1 , . . . ,  n. In [25] the authors characterized the graphs for which 
every LexBFS-ordering is a senfi-simplicial ordering as the HHD-free graphs, 
i.e. the graphs which do not contain a house, hole or domino as induced subgraph 
(cf. Figure 2). 

i I I 
i 

The house. The domino. The 'A'. 

i 
l 

Fig. 2. The house, the domino and the 'A'. 

If a HHD-free graph does not contain the 'A' of Figure 2 as induced subgraph 
then this graph is called weak bipolarizable (HHDA-free) [31]. 

In [16] we investigated powers of HHD-free graphs. We proved that  odd 
powers of HHD-free graphs are again HHD-free. Furthermore, an odd power 

G 2k+1 of a HHD-free graph G is chordal if and only if G does not contain a C4 (~) 

as an isometric subgraph (of. [1] and [5] for the role of C~ k) in distance-heredi- 

tary graphs and hole-free graphs). Hereby, a 6'4(k) is a graph induced by a 6'4 
with pendant paths of length k attached to the vertices of the 6'4, see Figure 3. 

( 1 [ J 
k k 

Fig. 3. A C~ k) and the C~ l) minus a pendant vertex. 

As a relaxation of m-convexity in chordal graphs we introduced the notion 
of rn3-convexity in [15] : A subset S C V is called rn3-convex iff for any pair of 



172 

vertices x, y of S each induced path  of length at least 3 connecting x and y is 
completely contained in S. 

L e m m a 8  [15]. An ordering ( v l , . . .  ,Vn) of the vertices of a graph G is semi-  
simplicial if and only if V(Gi)  is ma-convex in G for all i = 1 , . . . ,  n. 

The above lemma implies that  the minimum (with respect to a semi-simplicial 
ordering) of an induced pa th  of length at least three must be one of its endpoints. 

The proofs of our results are based on nice properties of shortest paths in 
HHD-free  graphs with respect to a given LexBFS-ordering.  

Let P = xo - . . .  - Xk be an induced pa th  and a be a LexBFS-ordering of the 
vertices of a HHD-free  graph G. A vertex xi, 1 < i < k - 1, is called switching 
point o f P  i f f x i_ l  < xi > xi+l or xi-1 > xi < xi+l.  The path  P is locally 
maximal (with respect to a) iff each vertex y e V \ V ( P )  which is adjacent to 
xi-1 and xi+l,  1 < i < k - 1, is smaller than xi, i.e. y < xi. If  P is not locally 
maximal then there must be a vertex xi of P,  1 < i < k - 1, and a vertex 
y ~ V ( P )  adjacent to xi-1 and x~+l such that  xi < y. 

L e m m a 9 .  Let P = xo - . . .  - Xk be a shortest path, k > 3. Then 

1. The number s of switching points of P is at most three. 
2. The switching points of P induce a subpath of P.  
3. I f  P is locally maximal then s <_ 1. 

L e m m a l 0 .  Let P = xo - . . .  - xk, k >__ 3, be a shortest path which is locally 
maximal. Furthermore let xo < xk and let xi ,  1 < i < k - 1, be the switching 
point of P.  Then 

1. d(xo,Xi) ~ d (x i , xk )  and 
2. if d(xo,xi)  = d ( x i , x k ) ,  i.e. k = 2 i ,  then Xo < Xk < . . .  < x j  < Xk- j  < . . .  < 

x~_l < x~+l < x~. 

Using property (P1), ma-convexi ty  and the above pa th  properties we can 
show 

T h e o r e m  11. Any LexBFS-ordering of a HHD-]ree graph G is a common semi-  
simplicial ordering of all odd powers of G. 

T h e o r e m  12. Any LexBFS-ordering of a HHD-free graph G is a common per- 
fect elimination ordering of all nontrivial odd powers of G if and only if G does 

not contain a C~ 1) minus a pendant vertex (cf. Figure 3) as isometric subgraph. 

C o r o l l a r y  13. Any LexBFS-ordering of a weak bipolarizable graph is a common 
perfect elimination ordering of all its nontrivial odd powers. 

C o r o l l a r y  14. Let v be the first vertex of a LexBFS-ordering of a weak bipolar- 
izable graph G. Then diam(G) - 1 <_ e(v) < diam(G).  



173 

Proof. First note that  for e(v) = 1 there is nothing to show. If e(v) = 2k + 1, 
k > 1, then G 2k+1 is complete and hence diam(G) = e(v). For e(v) = 2k the 
odd power G 2k+l is complete implying diam(G) <_ 2k + 1 = e(v) + 1. 

T h e o r e m  15. Any LexBFS-ordering of a HHD-ffee graph G is a common per- 
fect elimination ordering of all even powers of G if and only if G does not contain 
one of the graphs of Figure 1 as isometric subgraph. 

Similar to Corollary 14 we can prove 

C o r o l l a r y  16. Let v be the first vertex of a LexBFS-ordering of a HHD-free 
graph G which does not contain a graph of Figure 1 as isometric subgraph. Then 
diam(G) - 1 <_ e(v) < diam(G).  

5 Distance-Hereditary Graphs 

A graph G is distance-hereditary ([23]) iff each connected induced subgraph of 
G is isometric. Distance-hereditary graphs were extensively studied in [2], [22], 
[11], [1] and [29]. For proving our results we used the following property : 

T h e o r e m  17 (The  f o u r - p o i n t  c o n d i t i o n  [2]). Let G be a distance-heredi- 
tary graph. Then, for any four vertices u, v, w, x at least two of the distance 
s u m s  

d(u, v) + d(w, x), d(u, w) + d(v, x), d(u, x) + d(w, v) 

are equal, and, if the two smaller sums are equal then the larger one exceeds this 
by at most two. 

Furthermore, distance-hereditary graphs can be characterized by forbidden 
subgraphs ([2], [22]) : A graph is distance-hereditary if and only if it does not 
contain a hole, a house, a domino and a 3-fan as induced subgraph (see Figure 
4). 

z , .  ! ! 
! Z Z ! 

Fig. 4. A house, a domino and a 3-fan. 

Thus distance-hereditary graphs are HHD-free, and each LexBFS-ordering 
of G is a semi-simplicial ordering of G. 

Using the four-point condition, mS-convexity and property (P1) we can show 
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T h e o r e m  18. Each LexBFS-ordering a of a distance-hereditary graph G is a 
perfect elimination ordering of each even power G 2k, k > 1. 

Thus we reproved that even powers of distance-hereditary graphs are chordal 
(el. [1]). In [1] it was proved that  all odd powers of a distance-hereditary graph 
are HHD-free. Moreover, an odd power G 2k+1 is chordal if and only if G does 
not contain an induced subgraph isomorphic to the C~ k), cf. Figure 3. 

T h e o r e m  19. Any LexBFS-ordering a of a given distance-hereditary graph G 
is a common perfect elimination ordering of all its nontrivial powers if and only 
if G does not contain a C~ 1) minus a pendant vertex (el. Figure 3) as induced 
subgraph. 

T h e o r e m 2 0 .  Any LexBFS-ordering ~r of a distance-hereditary graph G is a 
common semi-simplicial ordering of all its powers. 

Computing a diametral pair of vertices 

In [12] a linear time algorithm for computing the diameter of a distance- 
hereditary graph was presented, but that  approach is not usable for finding a 
diametral pair of vertices. As an application of the preceding results we present 
a simpler algorithm which computes both the diameter and a diametral pair of 
vertices of a distance-hereditary graph in linear time. This points out once more 
the importance of considering chordal powers of graphs and perfect elimination 
orderings of them. 

L e m m a  21. Let v be the first vertex of a LexBFS-ordering of a distance-here- 
ditary graph G. Then 

diam(G) - 1 < e(v) < diam(G).  

Moreover, if e(v) is even then e(v) = diam(G).  

Proof. If e(v) = 2k, k > 1, then G 2k is complete by Theorem 18, and thus 
diam(G) -- 2k. If e(v) = 2k + 1, k > 1, then G 2/~+2 is complete by Theorem 18, 
and hence 2k + 1 < diam(G) <_ 2k + 2. [] 

C o r o l l a r y  22. Let G be a distance-hereditary graph which does not contain a 
C~ 1) minus a pendant vertex (@ .Figure 3) as induced subgraph, and let v be the 
first vertex of a LexBFS-ordering of G. Then e(v) = diam(G).  

Recall that  the ptolemaic graphs are exactly the chordal distance-hereditary 
graphs. Thus they do not contain a C~ 1) minus a pendant vertex. Therefore, any 
LexBFS-ordering of a ptolemaic graph is a diametral ordering. In [30] such an 
ordering is used to check the Hamiltonicity of a ptolemaic graph in linear time. 

For the sequel we may assume that  G is not complete for otherwise there is 
nothing to do. In what follows we describe the steps of the algorithm. 
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At first we compute  a LexBFS-orde r ing  (7 of a given d i s tance-hered i ta ry  
graph  G. Let v be the first vertex of a.  I f  e(v) = 2k, k >_ 1, then,  by L e m m a  
21, e(v) = diam(G),  and the vertices v and w E N~(V)(v) form a diametra l  
pair  of G. So let e(v) = 2k + 1. Now we star t  LexBFS at vertex v yielding a 
LexBFS-o rde r ing  ~- with first vertex u. If  e(u) = 2k + 2 then, by  L e m m a  21, 
diam(G) = 2k + 2 and the  vertices u and w E N r (u) form a d iametra l  pair  
of G. Otherwise (e(v) = e(u) = 2k + 1) we choose a vertex z at  distance k to u 
and at dis tance k + 1 to  v. 

L e m m a 2 3 .  k + l ~ e ( z )  ~ k + 2 .  

Proof. Since d(z, v) = k + 1 we immediately  have e(z) _> k + 1. So let w be a 
vertex of  V such tha t  d(z, w) > k + 2. We obtain the following distance sums : 

d(u, v) + d(z, w) = 2k + 1 + d(z, w) >_ 3k + 3 
d(u, z) + d(v, w) = k + d(v, w) <_ 3k + 1 
d(u ,w)  + d ( v , z )  = k  + l + d(u ,w)  < 3 k + 2  

Now the four -poin t  condit ion gives 

d ( v , w ) = 2 k + l ,  d ( u , w ) = 2 k ,  and d ( z , w ) = k + 2 .  

This settles the proof. [] 

For every vertex w of V \ D(z ,  k) we store in track(w) the second edge of an 
a rb i t ra ry  shortest  pa th  from z to w. Define F :=  {track(w) : w E V \ D(z ,  k)}. 
We will say tha t  two edges in a graph  are independent iff the vertices of  this 
edges induce a 2/(2 in G. 

L e m i n a  24.  diam( G) = 2 k +  2 if and only if the set F contains two independent 
edges. 

Proof. Let diam(G) = 2k + 2 and let x, y be vertices of G such tha t  d(x, y) = 
2k + 2. Since both  u and v (as first vertices of LexBFS-order ings)  are simplicial 
in G 2k we get 

d(u,x)  = d(u,y)  = d(v,x)  = d(v,y)  = 2k + 1. 

With  el(z, u) = k this implies d(z, z) _> k + 1. So we obta in  the following distance 
SUmS : 

+ = 2k + 1 + d(z, x) > 3k + 2 
d(u, z) + d(v, x) = k + 2k + 1 = 3k + 1 
d ( u , x ) + d ( v , z ) = 2 k  + l + k + l = 3 k + 2  

Now the four -po in t  condit ion gives d(z, x) = k +  1. By symmetry ,  d(z, y) = k+  1. 
Thus z lies on a shortest  pa th  joining x and y. Obviously, track(x) and track(y) 
are independent  edges due to d(x, y) = 2k + 2 and d(x, z) = d(y, z) = k + 1. 

Now let sis2 and tit2 be independent  edges in F .  Let  z - Sl - s2 - . . .  - wl 
and z - tl - t2 - . . .  - w2 be shortest  pa ths  of length at least k + 1. We will prove 
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d(wl,w2) = 2k + 2. Since s2 - sl - z - tl - t2 is induced we get d(s2,t2) = 4. 
Using k + 1 < e(z) < k + 2 we obtain the following distance sums : 

d(wl,z)  + d ( s 2 , t 2 ) = 4 + d ( w l , z )  e {k + 5, k +6}  
d(wl , s2)+d(z ,  t2) = 2 + d ( w l , s 2 )  C { k + l , k + 2 }  
d(Wl , t2) -}- d(z, s2) = 2 + d(wl , t2) 

Since the difference between the first and second distance sum is at least three 
the four-point condition implies that  the larger two sums must be equal, i.e. the 
first and third one. So we get 

k + 3  < d(Wl,t2) < k + 4  

by symmetry. Together with d(s2, t2) 

d(wl, w2) + d(s2, t2) 
d(wl, 82) "4- d(w2, t2) 
d(wl, t2) + d(w2, s2) 

and k + 3 < d ( w 2 , 8 2 )  < k + 4  

= 4 this implies 

= 4 + d(wl, w2) 
e { 2 k  - 2, 2k - 1, 2 k }  
E { 2 k + 6 , 2 k + 7 , 2 k + 8 }  

By the same argument as above the four-point condition implies that  the first 
and the third distance sum must be equal, i.e. d(wl,w2) > 2k + 2. [] 

Therefore the following algorithm correctly computes the diameter and a diame- 
tral pair of a distance-hereditary graph : 

Algorithm DHGDiam. 
I n p u t  : A connected distance-hereditary graph G. 
O u t p u t  : diam(G) and a diametral pair of vertices of G. 

(1) b e g i n  a :=LexBFS(G, s) for some s E V(G). 
(2) Let v be the first vertex of a. 
(3) i f  e(v) is even t h e n  r e tu rn (e (v ) ,  (v~ w)) where w E N e(~) (v). 
(4) else ~- :=LexBFS(G, v). 
(5) Let u be the first vertex of ~-. 
(6) if  e(u) = e(v) + 1 t h e n  r e tu rn ( c (u ) ,  (u, w)) where w e g e(u) (u). 
(7) else Let k E IN such that  e(v) = e(u) = 2k + 1. 
(8) Choose a vertex z from D(u, k) N D(v, k + 1). 
(9) F := {track(w) : w e V ' \  D(z ,k )} .  
(10) i f  F contains a pair el, e~ of independent edges 
(11) t h e n  r e t u r n ( 2 k  + 2, (x, y)) 

where x, y E V such that  track(x) = el and track(y) = e2. 
else r e t u r n ( 2 k  + 1, (v,u)) (12) 

(13) end. 

Before going into the implementation details consider the examples of Figure 
5. In the first one, a C (1) minus a pendant vertex, the algorithm correctly stops 
in step (6). In the second one both first vertices of both LexBFS-orderings have 
odd eccentricity. Thus we must compute the track-values and the set F.  
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a = (v, u, x, a, c, b, 8) 
~- = (u ,x , s , c ,b ,a ,v )  

e(v) = 3 
diam(G) = e(u) = 4 

x v w y 

a = ( v , x , y , w , b , a , c , t , z , u )  
T = ( u , x , y , t , z , a , c , w , b , v )  

e(v )  = e (u)  = 3 

diam(G) = d(x, y) = 4 

F = {xa, yc, vb, wb} 
xa, yc independent 

Fig. 5. Algorithm DHGDiam - -  Examples. 

It  remains to show tha t  the above algorithm can be implemented to run in 
linear time. I t  is well-known tha t  LexBFS and BFS run in linear time. So it is 
sufficient to consider steps (9) and (10). 

S t e p  (9). At first we build a BFS- t ree  rooted at z yielding the set of neigh- 
bourhoods N i ( z ) ,  i = 0 , . . . , e ( z )  of z. For any vertex x E V \ {z} let f ( x )  
denote the father of x in the BFS-tree.  

We compute the t rack-values  levelwise : For all vertices w in N~(z )  define 
t rack(w)  := wy where y = f ( w ) .  Recursively we compute t rack(w)  := 
t r a c k ( f  (w)) for w e Ni(z) ,  i = 3 , . . . , e ( z ) .  

Now we can compute F by collecting all t rack-edges  of the vertices of the 
set V \ D ( z ,  k). Obviously the above procedure runs in linear time. 

S t e p  (10). We use the BFS- t ree  rooted at z which was already computed in 
step (9). Let b : V -+ IN be the numbering of the vertices of G produced by 
BFS where b(z) = 1. Let $1 ($2) be the vertices of N ( z )  (N2 ( z ) )  which are 
endpoints of edges of F.  
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In what follows we explain a procedure looking for a pair of independent 
edges: 

Consider the vertex x of $1 with maximal b-number. By stepping through 
the neighbourhood of x we mark all vertices of $1 which are either neighbours 
of x or fathers of neighbours of z in $2 (eft Figure 6 left). 

Sl X z a ~  ~ 
In rk 

Fig. 6. Algorithm DHGDiam - -  Test for independent edges in F. 

If there is an unmarked vertex y E $1 then there must be a neighbour w of 
y in $2. We claim that the edges yw and xu, for some neighbour u of x in 
$2, are independent (cf. Figure 6 right). 
Indeed, since y is unmarked we must have xw ~ E and xy ~ E. Since 
b(x) > b(y), x = f(u)  and y = f (w)  the rules of BFS imply uy (~ E (if 
uy e E then f (u)  = y). Now uw ~ E for otherwise the set { z , x , y , w , u }  
induces a cycle of length five. Therefore, edges yw and xu are independent. 

Now assume that  all vertices of $1 are marke& Then x cannot be an endpoint 
of a pair of independent edges. So we delete x from $1 and all neighbours of 
x of $2. We repeat the above procedure until we get a pair of independent 
edges or Sz is empty. 

Since processing a vertex x of $1 takes O(deg(x)) the total running time of 
step (10) is linear~ 

Summarizing the above we get 

T h e o r e m  25. For distance-hereditary graphs the diameter and a diametral pair 
of vertices can be computed in linear time. 



179 

References 

1. H.J. BANDELT, A. HENKMANN and F. NICOLAI, Powers of distance-hereditary 
graphs, Discr. Math. 145 (1995), 37-60. 

2. H.-J. BANDELT and H.M. MULDER, Distance-hereditary graphs, Journal of Corn- 
bin. Theory (B)41 (1986), 182-208. 

3. A. BRANDSTADT, V.D. CHEPOI and F.F. DRAGAN, Perfect elimination orderings 
of chordal powers of graphs, Technical Report Gerhard-Mercator-Universits - 
Gesamthochschule Duisburg SM-DU-252, 1994 (to appear in Discr. Math.). 

4. A. BRANDST.~DT~ F.F. DRAGAN~ V.D. CHEPOI and V.I. VOLOSHIN, Dually chor- 
of WG'93, Springer, Lecture Notes in Computer Science 790 dal graphs, Proc. 

(1994), 237-251. 
5. A. BRANDST~.DT, 

graphs, Technical 
6. A. BRANDST.~DT, 

F.F. DRAGAN and V.B. LE, Induced cycles and odd powers of 
Report Universits Rostock CS-09-95, 1995. 
F.F. DRAGAN and F. •ICOLAI, LexBFS-orderings and powers 

of chordal graphs, Technical Report Gerhard-Mercator-Universits - Gesamthoch- 
schule Duisburg SM-DU-287, 1995 (to appear in Discr. Math.). 

7. P~. CHANDRASEKARAN and A. DOUGHETY, Location on tree networks: p-center 
and q-dispersion problems, Math. Oper. Res. 6 (1981), No. 1, 50-57. 

8. G.J. CHANG and G.L. NEMHAUSER, The k-domination and k-stability problems 
on sun-flee chordal graphs, SIAM J. Algebraic and Discrete Methods, 5 (1984), 
332-345. 

9. G. CHARTRAND and D.C. KAY, A characterization of certain ptolemaic graphs, 
Canad. Journal Math. 17 (1965), 342-346. 

10. V. CHVATAL, Perfectly orderable graphs, Annals of Discrete Math. 21 (1984), 63- 
65. 

11. A. D'ATRI and M. MOSCAP~INI, Distance-hereditary graphs, Steiner trees and 
connected domination, SIAM J. Computing 17 (1988), 521-538. 

12. F.F. DRAGAN, Dominating cliques in distance-hereditary graphs, Proceedings of 
SWAT'94, Springer, Lecture Notes in Computer Science 824, 370-381. 

13. F.F. DI~AGAN and F. NICOLM, LexBFS-orderings of distance-hereditary graphs, 
Technical Report Gerhard-Mercator-Universit~it - Gesamthochschule Duisburg 
SM-DU-303, 1995. 

14. F.F. DP~AGAN and F. NICOLAI, LexBFS-orderings and powers of HHD-free graphs, 
Technical Report Gerhard-Mercator-Universitgt - Gesamthochschule Duisburg 
SM-DU 322, 1996. 

15. F.F. DRAGAN, F. NICOLAI and A. BRANDST~DT, Convexity and HHD-free graphs, 
Technical Report Gerhard-Mercator-Universit~it - Gesamthochschule Duisburg 
SM-DU-290, 1995. 

16. F.F. DRAGAN, F. NICOLM and A. BRANDST~DT, Powers of HHD-ffee graphs, 
Technical Report Gerhard-Mercator-Universit~it - Gesamthochschule Duisburg 
SM-DU-315, 1995. 

17. F.F. DRAGAN, C.F. PRISACARU and V.D. CHEPOI, Location problems in graphs 
and the Helly property (in Russian), Discrete Mathematics, Moscow, 4 (1992), 
67-73. 

18. P. DUCUET, Classical perfect graphs, Annals of Discr. Math. 21 (1984), 67-96. 
19. M. FARBER and R.E. JAMISON, Convexity in graphs and hypergraphs, SIAM Jour- 

nal Alg. Discrete Meth. 7, 3 (1986), 433-444. 
20. M. GIONFRIDDO, A short survey on some generalized colourings of graphs, Ars 

Comb. 30 (1986), 275-284. 



180 

21. M.C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, 
New York 1980. 

22. P.L. HAMMER and F. MAFFRAY, Completely separable graphs, Discr. Appl. Math. 
27 (1990), 85-99. 

23. E. HOWORKA, A characterization of distance-hereditary graphs, Quart. J. Math. 
Oxford Ser. 2, 28 (1977), 417-420. 

24. E. HOWORKA, A characterization of ptolemaic graphs, Journal of Graph Theory 
5 (1981), 323-331. 

25. B. JAMISON and S. OLARIU, On the semi-perfect elimination, Advances in Applied 
Math. 9 (1988), 364-376. 

26. T.R. JENSEN and B. TOFT~ Graph coloring problems, Wiley 1995. 
27. T. KLOKS, D. KRATSCH and H. MULLER, Approximating the bandwidth for AT- 

free graphs, Proceedings of European Symposium on Aigori~hms ESA '95, Springer, 
Lecture Notes in Computer Science 979 (1995), 434-447. 

28. R. LASKAR and D.R. SmER, On powers and centers of chordal graphs, Discr. Appl. 
Math. 6 (1983), 139-147. 

29. F o NICOLAI, A hypertree characterization of distance-hereditary graphs, TechnicM 
Report Gerhard-Mercator-Universits - Gesamthoehschule Duisburg SM-DU-255 
1994. 

30. F. NICOLAI, Hamiltonian problems on distance-hereditary graphs, Technical Re- 
port Gerhard-Mercator-Universit~t - Gesamthochschule Duisburg SM-DU-264, 
1994. 

31. S. OLARIU, Weak bipolarizable graphs, Discr. Math. 74 (1989), 159-171. 
32. D. ROSE, R.E. TARJAN and G. LUEKER, Algorithmic aspects on vertex elimination 

on graphs, SIAM J. Computing 5 (1976), 266-283. 
33. R.E. TARJAN and M. YANNAKAKIS, Simple linear time algorithms to test chordal- 

ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper- 
graphs, SIAM J. Computing 13, 3 (1984), 566-579. 


