Abstract
In this paper we investigate the area requirement of proximity drawings and we prove an exponential lower bound. Our main contribution is to show the existence of a class of Gabriel-drawable graphs that require exponential area for any Gabriel drawing and any resolution rule. The result is further extended to an infinite class of proximity drawings.
Work supported in part by the US National Science Foundation under grant CCR-9423847, by the US Army Research Office under grant DAAH04-96-1-0013, by the NATO Scientific Affairs Division under collaborative research grant 911016, by EC ESPRIT Long Term Research Project ALCOM-IT under contract no. 20244, by Progetto Finalizzato Trasporti 2 (PFT 2) of the Italian National Research Council (CNR), and by the NATO-CNR Advanced Fellowships Programme. This research was done when the first author was with the Center for Geometric Computing, Department of Computer Science, Brown University,Providence, RI 02912-1910, USA. This research started while the fourth author was visiting the Computer Science Department of Brown University.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable trees. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 340–351. Springer-Verlag, 1995.
P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Algorithmica, 16:83–110, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia, to appear).
R. P. Brent and H. T. Kung. On the area of binary tree layouts. Inform. Process. Lett., 11:521–534, 1980.
Marek Chrobak, Michael T. Goodrich, and Roberto Tamassia. Convex drawings of graphs in two and three dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 319–328, 1996.
P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl., 2:187–200, 1992.
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.
G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability: a survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 328–339. Springer-Verlag, 1995.
G. Di Battista, G. Liotta, and S. H. Whitesides. The strength of weak proximity. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 178–189. Springer-Verlag, 1996.
G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.
P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica, vol. 16, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).
P. D. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications, 5:10–36, 1992.
H. ElGindy, G. Liotta, A. Lubiw, H. Meijer, and S. H. Whitesides. Recognizing rectangle of influence drawable graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 352–363. Springer-Verlag, 1995.
K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259–278, 1969.
A. Garg, M. T. Goodrich, and R. Tamassia. Area-optimal upward tree drawings. Internat. J. Comput. Geom. Appl. to appear.
A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 359–368, 1993.
D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology. In G. T. Toussaint, editor, Computational Geometry, pages 217–248. North-Holland, Amsterdam, Netherlands, 1985.
C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.
W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In Graph Drawing (Proc. GD '96), Lecture Notes in Computer Science. Springer-Verlag, 1996.
Giuseppe Liotta and Giuseppe Di Battista. Computing proximity drawings of trees in the 3-dimemsional space. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 239–250. Springer-Verlag, 1995.
A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative neighborhood graphs. In Proc. 5th Canad. Conf. Comput. Geom., pages 198–203, Waterloo, Canada, 1993.
D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geogr. Anal., 12:205–222, 1980.
C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8:265–293, 1992.
J. D. Radke. On the shape of a set of points. In G. T. Toussaint, editor, Computational Morphology, pages 105–136. North-Holland, Amsterdam, Netherlands, 1988.
C. D. Thompson. Area-time complexity for VLSI. In Proc. 11th Annu. ACM Sympos. Theory Comput., pages 81–88, 1979.
G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recogn., 12:261–268, 1980.
G. T. Toussaint. A graph-theoretical primal sketch. In G. T. Toussaint, editor, Computational Morphology, pages 229–260. North-Holland, Amsterdam, Netherlands, 1988.
R. B. Urquhart. Graph theoretical clustering based on limited neighbourhood sets. Pattern Recogn., 15:173–187, 1982.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liotta, G., Tamassia, R., Tollis, I.G., Vocca, P. (1997). Area requirement of Gabriel drawings (extended abstract). In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds) Algorithms and Complexity. CIAC 1997. Lecture Notes in Computer Science, vol 1203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62592-5_67
Download citation
DOI: https://doi.org/10.1007/3-540-62592-5_67
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62592-6
Online ISBN: 978-3-540-68323-0
eBook Packages: Springer Book Archive