Skip to main content

Area requirement of Gabriel drawings (extended abstract)

  • Regular Presentations
  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1203))

Included in the following conference series:

  • 123 Accesses

Abstract

In this paper we investigate the area requirement of proximity drawings and we prove an exponential lower bound. Our main contribution is to show the existence of a class of Gabriel-drawable graphs that require exponential area for any Gabriel drawing and any resolution rule. The result is further extended to an infinite class of proximity drawings.

Work supported in part by the US National Science Foundation under grant CCR-9423847, by the US Army Research Office under grant DAAH04-96-1-0013, by the NATO Scientific Affairs Division under collaborative research grant 911016, by EC ESPRIT Long Term Research Project ALCOM-IT under contract no. 20244, by Progetto Finalizzato Trasporti 2 (PFT 2) of the Italian National Research Council (CNR), and by the NATO-CNR Advanced Fellowships Programme. This research was done when the first author was with the Center for Geometric Computing, Department of Computer Science, Brown University,Providence, RI 02912-1910, USA. This research started while the fourth author was visiting the Computer Science Department of Brown University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable trees. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 340–351. Springer-Verlag, 1995.

    Google Scholar 

  2. P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Algorithmica, 16:83–110, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia, to appear).

    Google Scholar 

  3. R. P. Brent and H. T. Kung. On the area of binary tree layouts. Inform. Process. Lett., 11:521–534, 1980.

    Google Scholar 

  4. Marek Chrobak, Michael T. Goodrich, and Roberto Tamassia. Convex drawings of graphs in two and three dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 319–328, 1996.

    Google Scholar 

  5. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl., 2:187–200, 1992.

    Google Scholar 

  6. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.

    Google Scholar 

  7. G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability: a survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 328–339. Springer-Verlag, 1995.

    Google Scholar 

  8. G. Di Battista, G. Liotta, and S. H. Whitesides. The strength of weak proximity. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of Lecture Notes in Computer Science, pages 178–189. Springer-Verlag, 1996.

    Google Scholar 

  9. G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.

    Google Scholar 

  10. P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica, vol. 16, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).

    Google Scholar 

  11. P. D. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications, 5:10–36, 1992.

    Google Scholar 

  12. H. ElGindy, G. Liotta, A. Lubiw, H. Meijer, and S. H. Whitesides. Recognizing rectangle of influence drawable graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 352–363. Springer-Verlag, 1995.

    Google Scholar 

  13. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259–278, 1969.

    Google Scholar 

  14. A. Garg, M. T. Goodrich, and R. Tamassia. Area-optimal upward tree drawings. Internat. J. Comput. Geom. Appl. to appear.

    Google Scholar 

  15. A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 359–368, 1993.

    Google Scholar 

  16. D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology. In G. T. Toussaint, editor, Computational Geometry, pages 217–248. North-Holland, Amsterdam, Netherlands, 1985.

    Google Scholar 

  17. C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.

    Google Scholar 

  18. W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In Graph Drawing (Proc. GD '96), Lecture Notes in Computer Science. Springer-Verlag, 1996.

    Google Scholar 

  19. Giuseppe Liotta and Giuseppe Di Battista. Computing proximity drawings of trees in the 3-dimemsional space. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 239–250. Springer-Verlag, 1995.

    Google Scholar 

  20. A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative neighborhood graphs. In Proc. 5th Canad. Conf. Comput. Geom., pages 198–203, Waterloo, Canada, 1993.

    Google Scholar 

  21. D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geogr. Anal., 12:205–222, 1980.

    Google Scholar 

  22. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8:265–293, 1992.

    Google Scholar 

  23. J. D. Radke. On the shape of a set of points. In G. T. Toussaint, editor, Computational Morphology, pages 105–136. North-Holland, Amsterdam, Netherlands, 1988.

    Google Scholar 

  24. C. D. Thompson. Area-time complexity for VLSI. In Proc. 11th Annu. ACM Sympos. Theory Comput., pages 81–88, 1979.

    Google Scholar 

  25. G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recogn., 12:261–268, 1980.

    Google Scholar 

  26. G. T. Toussaint. A graph-theoretical primal sketch. In G. T. Toussaint, editor, Computational Morphology, pages 229–260. North-Holland, Amsterdam, Netherlands, 1988.

    Google Scholar 

  27. R. B. Urquhart. Graph theoretical clustering based on limited neighbourhood sets. Pattern Recogn., 15:173–187, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giancarlo Bongiovanni Daniel Pierre Bovet Giuseppe Di Battista

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liotta, G., Tamassia, R., Tollis, I.G., Vocca, P. (1997). Area requirement of Gabriel drawings (extended abstract). In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds) Algorithms and Complexity. CIAC 1997. Lecture Notes in Computer Science, vol 1203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62592-5_67

Download citation

  • DOI: https://doi.org/10.1007/3-540-62592-5_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62592-6

  • Online ISBN: 978-3-540-68323-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics