Skip to main content

A type theoretical view of Böhm-trees

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1210))

Included in the following conference series:

  • 139 Accesses

Abstract

Two variations of the intersection type assignment system are studied in connection with Böhm-trees. One is the intersection type assignment system with a non-standard subtype relation, by means of which we characterize whereabouts of D in Böhm-trees. The other is a refinement of the intersection type assignment system whose restricted typability is shown to coincide with finiteness of Böhm-trees.

This research was supported in part by JSPS Research Fellowships for Young Scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. van Bakel, Complete restrictions of the intersection type descipline, Theoretical Computer Science 102 (1992), 135–163.

    Google Scholar 

  2. H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, revised edition, North-Holland, Amsterdam, 1984.

    Google Scholar 

  3. H. P. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, Journal of Symbolic Logic 48 (1983), 931–940.

    Google Scholar 

  4. M. Coppo, M. Dezani-Ciancaglini and B. Venneri, Functional characters of solvable terms, Zeitschrift für Mathematische Logik und Grundlagen der Mathmatik 27 (1981), 45–58.

    Google Scholar 

  5. M. Coppo, M. Dezani-Ciancaglini and M. Zacchi, Type theories, normal forms and D∞ lambda-models, Information and Computation 72 (1987), 85–116.

    Google Scholar 

  6. J. Y. Girard, Interprétation fonctionnelle et élimination des coupures dans l'arithmétique d'ordre supérieur, Thèse de doctorat d'état, Université Paris VII, 1972.

    Google Scholar 

  7. J. Y. Girard, P. Taylor and Y. Lafont, Proofs and Types, Cambridge University Press, 1989.

    Google Scholar 

  8. J. R. Hindley, The completeness theorem for typing λ-terms, Theoretical Computer Science 22 (1983), 1–17.

    Google Scholar 

  9. F. Honsell and S. Ronchi Delia Rocca, An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus, Journal of Computer and System Sciences 45 (1992), 49–75.

    Google Scholar 

  10. J. L. Krivine, Lambda-Calculus, Types and Models, Ellis Horwood, 1993.

    Google Scholar 

  11. J. C. Mitchell, Type systems for programming languages, Handbook of Theoretical Computer Science Volume B: Formal Models and Semantics, The MIT Press/Elsevier, 1990.

    Google Scholar 

  12. G. D. Plotkin, λ-definability in the full type hierarchy, in: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, ed. J. R. Hindley and J. P. Seldin, Academic Press, New York, 363–373.

    Google Scholar 

  13. G. Pottinger, A type assignment for the strongly normalizable λ-terms, in: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, ed. J. R. Hindley and J. P. Seldin, Academic Press, New York, 363–373.

    Google Scholar 

  14. R. Statman, Logical relations and the typed lambda calculus, Information and Control 65 (1985), 85–97.

    Google Scholar 

  15. W. W. Tait, Intensional interpretation of functionals of finite type, Journal of Symbolic Logic 32 (1967), 198–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe de Groote J. Roger Hindley

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurata, T. (1997). A type theoretical view of Böhm-trees. In: de Groote, P., Roger Hindley, J. (eds) Typed Lambda Calculi and Applications. TLCA 1997. Lecture Notes in Computer Science, vol 1210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62688-3_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-62688-3_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62688-6

  • Online ISBN: 978-3-540-68438-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics