Skip to main content

High performance computing in power system applications

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR'96 (VECPAR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Included in the following conference series:

Abstract

This paper presents a review of the research activities developed in recent years in the field of High Performance Computing (HPC) application to power system problems and a perspective view of the utilization of this technology by the power industry. The paper starts with a brief introduction to the different types of HPC platforms adequate to power system applications. Then, the most computer intensive power system computation models are described. Next, the promising areas of HPC application in power system are commented. Finally, a critical review of the recent developed research work in the field, along with prospective developments, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.G. Lewis and H. El-Rewini. Introduction to Parallel Computing. Prentice Hall, New York, 1992.

    Google Scholar 

  2. M.J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, New York, 1994.

    Google Scholar 

  3. G.A. Geist and V.S. Sunderam. Network-based concurrent computing on the PVM system. Concurrency: Practice and Experience, 4(4):293–311, June 1992.

    Google Scholar 

  4. B. Stott, O. Alsac, and A. Monticelli. Security analysis and optimization. Proceedings of the IEEE, 75(12):1623–1644, December 1987.

    Google Scholar 

  5. N.J. Balu and et al. On-line power system security analysis. Proceedings of the IEEE, 80(2):262–280, February 1992.

    Google Scholar 

  6. Y. Sekine, K. Takahashi, and T. Sakaguchi. Real-time simulation of power system dynamics. Int. J. of Electrical Power and Energy Systems, 16(3):145–156, 1994.

    Google Scholar 

  7. M.V.F. Pereira and N.J. Balu. Composite generation/transmission reliability evaluation. Proceedings of the IEEE, 80(4):470–491, April 1992.

    Google Scholar 

  8. R. Billinton and W. Li. Reliability Assessment of Electric Power Systems Using Monte Carlo Method. Plenum Press, New York, 1994.

    Google Scholar 

  9. B. Stott. Power system dynamic response calculations. Proceedings of the IEEE, 67(2):219–241, February 1979.

    Google Scholar 

  10. P. Kundur. Power System Stability and Control. McGraw-Hill, New York, 1994.

    Google Scholar 

  11. J.Q. Wu and A. Bose. Parallel solution of large sparse matrix equations and parallel power flow. IEEE Transactions on Power Systems, 10(3):1343–1349, August 1995.

    Google Scholar 

  12. J.Q. Wu and A. Bose. A new successive relaxation scheme for the W-matrix solution method on a shared-memory parallel computer. IEEE Transactions on Power Systems, 11(1):233–238, February 1996.

    Google Scholar 

  13. G.T. Vuong, R. Chahine, G.P. Granelli, and R. Montagna. Dependency-based algorithm for vector processing of sparse matrix forward/backward substitutions. IEEE Transactions on Power Systems, 11(1):198–205, February 1996.

    Google Scholar 

  14. I.C. Decker, D.M. Falcão, and E. Kaszkurewicz. Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method. IEEE Transactions on Power Systems, 7(1):458–465, February 1992.

    Google Scholar 

  15. F.D. Galiana, H. Javidi, and S. McFee. On the application of pre-conditioned conjugate gradient algorithm to power network analysis. IEEE Transactions on Power Systems, 9(2):629–636, May 1994.

    Google Scholar 

  16. I.C. Decker, D.M. Falcão, and E. Kaszkurewicz. Conjugate gradient methods for power system dynamic simulation on parallel computers. IEEE Transactions on Power Systems, 11(3):1218–1227, August 1996.

    Google Scholar 

  17. H. Dag and F.L. Alvarado. Computation-free preconditioners for the parallel solution of power system problems. IEEE Transactions on Power Systems, to appear.

    Google Scholar 

  18. H. Dag and F.L. Alvarado. Toward improved use of the conjugate gradient method for power system applications. IEEE Transactions on Power Systems, to appear.

    Google Scholar 

  19. M.H.M Vale, D.M. Falcão, and E. Kaszkurewicz. Electrical power network decomposition for parallel computations. In Proceedings of the IEEE Symposium on Circuits and Systems, pages 2761–2764, San Diego, USA, May 1992.

    Google Scholar 

  20. J.S. Chai, N. Zhu, A. Bose, and D.J. Tylavsky. Parallel newton type methods for power system stability analysis using local and shared memory multiprocessors. IEEE Transactions on Power Systems, 6(4):1539–1545, November 1991.

    Google Scholar 

  21. J.S. Chai and A. Bose. Bottlenecks in parallel algorithms for power system stability analysis. IEEE Transactions on Power Systems, 8(1):9–15, February 1993.

    Google Scholar 

  22. A. Padilha and A. Morelato. A W-matrix methodology for solving sparse network equations on multiprocessor computers. IEEE Transactions on Power Systems, 7(3):1023–1030, 1992.

    Google Scholar 

  23. H. Taoka, I. Iyoda, H. Noguchi, N. Sato, and T. Nakazawa. Real-time digital simulator for power system analysis on a hypercube computer. IEEE Transactions on Power Systems, 7(1): 1–10, February 1992.

    Google Scholar 

  24. M.Ilić-Spong, M.L. Crow, and M.A. Pai. Transient stability simulation by wave-form relaxation methods. IEEE Transactions on Power Systems, 2(4):943–952, November 1987.

    Google Scholar 

  25. M.L. Crow and M. Ilić. The parallel implementation of the waveform relaxation method for transient stability simulations. IEEE Transactions on Power Systems, 5(3):922–932, August 1990.

    Google Scholar 

  26. L. Hou and A. Bose. Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem. IEEE Transactions on Power Systems, to appear.

    Google Scholar 

  27. F. Alvarado. Parallel solution of transient problems by trapezoidal integration. IEEE Transactions on Power Apparatus and Systems, 98(3):1080–1090, May/June 1979.

    Google Scholar 

  28. M. LaScala, A. Bose, D.J. Tylavsky, and J.S. Chai. A highly parallel method for transient stability analysis. IEEE Transactions on Power Systems, 5(4):1439–1446, November 1990.

    Google Scholar 

  29. M. LaScala, M. Brucoli, F. Torelli, and M. Trovato. A Gauss-Jacobi-block-Newton method for parallel transient stability analysis. IEEE Transactions on Power Systems, 5(4):1168–1177, November 1990.

    Google Scholar 

  30. H.W. Dommel and W.S. Meyer. Computation of electromagnetic transients. Proceedings of the IEEE, 62:983–993, July 1974.

    Google Scholar 

  31. D.M. Falcão, E. Kaszkurewicz, and H.L.S. Almeida. Application of parallel processing techniques to the simulation of power system electromagnetic transients. IEEE Transactions on Power Systems, 8(1):90–96, February 1993.

    Google Scholar 

  32. R.C. Durie and C. Pottle. An extensible real-time digital transient network analyzer. IEEE Transactions on Power Systems, 8(1):84–89, February 1993.

    Google Scholar 

  33. K. Werlen and H. Glavitsch. Computation of transients by parallel processing. IEEE Transactions on Power Delivery, 8(3):1579–1585, July 1993.

    Google Scholar 

  34. J.R. Marti and L.R. Linares. A real-time EMTP simulator. IEEE Transactions on Power Systems, 9(3):1309–1317, August 1994.

    Google Scholar 

  35. N. Martins. Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Transactions on Power Systems, 1(1):217–226, February 1986.

    Google Scholar 

  36. J.M. Campagnolo, N. Martins, J.L.R. Pereira, L.T.G. Lima, H.J.C.P. Pinto, and D.M. Falcão. Fast small-signal stability assessment using parallel processing. IEEE Transactions on Power Systems, 9(2):949–956, May 1994.

    Google Scholar 

  37. J.M. Campagnolo, N. Martins, and D. M.Falcão. An efficient and robust eigenvalue method for small-signal stability assessment in parallel computers. IEEE Transactions on Power Systems, 10(1):506–511, February 1995.

    Google Scholar 

  38. J.M. Campagnolo, N. Martins, and D. M.Falcão. Refactored bi-iteration: A high performance eigensolution method for large power system matrices. IEEE Transactions on Power Systems, 11(3):1228–1235, August 1996.

    Google Scholar 

  39. S.M. Shahidehpour and V.C. Ramesh. Nonlinear programming algorithms and decomposition strategies for OPF. In Optimal Power Flow: Solution Techniques, Requirements, and Challenges, pages 10–25. IEEE Tutorial Course 96 TP 111-0, 1996.

    Google Scholar 

  40. A. Monticelli, M.V.F. Pereira, and S. Granville. Security constrained optimal power flow with post-contingency corrective rescheduling. IEEE Transactions on Power Systems, 2(1):175–182, February 1987.

    Google Scholar 

  41. H.J.C. Pinto, M.V.F. Pereira, and M.J. Teixeira. New parallel algorithms for the security-constrained dispatch with post-contingency corrective actions. In Proceedings of the 10th Power Systems Computation Conference, pages 848–853, Graz, Austria, August 1990.

    Google Scholar 

  42. M. Rodrigues, O.R. Saavedra, and A. Monticelli. Asynchronous programming model for the concurrent solution of the security constrained optimal power flow problem. IEEE Transactions on Power Systems, 9(4):2021–2027, November 1994.

    Google Scholar 

  43. V.C. Ramesh and S.N. Talukdar. A parallel asynchronous decomposition for online contingency planning. IEEE Transactions on Power Systems, 11(1):344–349, February 1996.

    Google Scholar 

  44. S.N. Talukdar and V.C. Ramesh. A multi-agent technique for contingen-cyconstrained optimal power flows. IEEE Transactions on Power Systems, 9(2):855–861, May 1994.

    Google Scholar 

  45. S.-Y. Lin. A distributed state estimation for electric power systems. IEEE Transactions on Power Systems, 7(2):551–557, May 1992.

    Google Scholar 

  46. S.-Y. Lin and C.-H. Lin. An implementable distributed state estimation and distributed data processing scheme for electric power systems. IEEE Transactions on Power Systems, 9(2):1277–1284, May 1994.

    Google Scholar 

  47. D.M. Falcão, F.F. Wu, and L. Murphy. Parallel and distributed state estimation. IEEE Transactions on Power Systems, 10(2):724–730, May 1995.

    Google Scholar 

  48. D.J. Boratynska-Stadnicka, M.G. Lauby, and J.E. Van Ness. Converting an existing computer code to a hypercube computer. In Proceedings of the IEEE Power Industry Computer Applications Conference, Seattle, USA, May 1989.

    Google Scholar 

  49. M.J. Teixeira, H.J.C. Pinto, M.V.F. Pereira, and M.F. McCoy. Developing concurrent processing applications to power system planning and operations. IEEE Transactions on Power Systems, 5(2):659–664, May 1990.

    Google Scholar 

  50. N. Gubbala and C. Singh. Models and considerations for parallel implementation of Monte Carlo simulation methods for power system reliability evaluation. IEEE Transactions on Power Systems, 10(2):779–787, May 1995.

    Google Scholar 

  51. C.L.T. Borges, A.L.G.A. Coutinho, and D.M. Falcão. Power flow solution in vector computers using the Bi-CGSTAB method. In Proceedings of the XI Congresso Brasileiro de Automática, (in Portuguese), São Paulo, Brasil, May 1996.

    Google Scholar 

  52. Y. Fukuyama and H.-D. Chiang. A parallel genetic algorithm for generation expansion planning. IEEE Transactions on Power Systems, 11(2):955–961, May 1996.

    Google Scholar 

  53. R.A. Gallego, A.B. Alves, A. Monticelli, and R. Romero. Parallel simulated annealing applied to long term transmission network expansion planning. IEEE Transactions on Power Systems, to appear.

    Google Scholar 

  54. D. Brandt, R. Wachal, R. Valiquette, and R. Wierckx. Closed loop testing of a joint VAR controller using a digital real-time simulator. IEEE Transactions on Power Systems, 6(3):1140–1146, August 1991.

    Google Scholar 

  55. P. McLaren, R. Kuffel, R. Wierckx, J. Giesbrecht, and L. Arendt. A real-time digital simulator for testing relays. IEEE Transactions on Power Delivery, 7(1), January 1992.

    Google Scholar 

  56. G.T. Vuong, R. Chahine, and S. Behling. Supercomputing for power system analysis. IEEE Computer Applications in Power, 5(3):45–49, July 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Falcão, D.M. (1997). High performance computing in power system applications. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_109

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics