Skip to main content

An interface based on transputers to simulate the dynamic equation of robot manipulators using parallel computing

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR'96 (VECPAR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Included in the following conference series:

  • 106 Accesses

Abstract

The inverse dynamics control of robot manipulators is based on the application of a nonlinear feedback control law. The implementation of this control requires the computation of all the terms of the dynamic equation at each sample instant. In order to solve this problem, distributed memory parallel algorithms using the Lagrange-Euler formulation are presented. This formulation permits us to establish matrix structures that are distributed among the processors by rows with a good computational load balance. A new Windows interface, called WinServer, based on transputers, which permits us to modify the robot parameters and to simulate the dynamic equation is also presented. This interface can be used as a monitoring tool that allows the user to know the situation of the different processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balestrino, A. D., A. S. L. Zinober. Nonlinear Adaptative Model-following Control, Automatica, vol. 20. no. 5. pp. 559–568 (1984).

    Google Scholar 

  2. Bejzcy, A. K. Robot arm dynamics and control., NASA-JPL Technical Memorandum, 33–669 (1974).

    Google Scholar 

  3. Berghuis, H., R. Ortega, H. Nijmeijer. A robust adaptative controrller for robot manipulators., IEEE Trans. on Robotics and Automation, vol. 10. no. 6. pp. 825–830 (1993).

    Google Scholar 

  4. Craig, J., Adaptative Control of Mechanical Manipulators., Int. Conf. on Robotics and Automation (San Francisco, 1986).

    Google Scholar 

  5. Fijancy, A. and A. K. Bejczy. A class of parallel algorithms for computation of the manipulator inertia matrix., Proc. Int. conf. Robotics and Automation (Scottsdale, Ariz., 1989), pp. 1818–1826.

    Google Scholar 

  6. Fu, K. S., R.C. González and C.S.G. Lee. Robótica, Control, Detección, Visión e Inteligencia. Ed. MCGraw-Hill.

    Google Scholar 

  7. Good, M. C., L.M. Sweet, K. L. Strobel. Dynamic models for control system design of integrated robot and drive systems., ASME J. dynamic System Measurement Control, vol. 107. pp. 53–59 (1985).

    Google Scholar 

  8. Graham, I. and T. King. The Transputer Handbook., Pretince Hall International Ltd., U.K., (1990).

    Google Scholar 

  9. INMOS Ltd. INMOS B008 User guide and Reference Manual.

    Google Scholar 

  10. Kasahara, H. and S. Narita. Parallel Procesing of Robot-Arm Control Computaion on a Multimicroprocessor System., IEEE J. of Robotics and Automatica, vol. RA-1. no. 2. pp. (1985).

    Google Scholar 

  11. Khatib, O. and J. Burdick. Motion and force control of robots manipulators., Proc. IEEE Int. Conf. on Robotics 1986), pp. 1381–1386.

    Google Scholar 

  12. Lathrop, R. H. and P.R. Chang. Parallelism in manipulator dynamics., Int. J. Robot., pp. 80–102 (1985).

    Google Scholar 

  13. Lewis, R. A. Autonomous manipulation on a robot: Summary of manipulator software functions., Tec. Memorandum 33-679, Jet Propulsion Lanboratory, Pasadena, California (1974).

    Google Scholar 

  14. Neuman, C. P. and J. J., Murray. Customized computational robot dynamics., Int. Robotics Systems, vol. 4, no. 4, pp. 503–526 (1987).

    Google Scholar 

  15. Penalver, L., J. C. Fernández, V. Hernández and J. Tornero Distributed Parallel Algorithms for the Inverse Dynamics Control of Robot Manipulators., Proc. 3rd IFAC/IFIP Workshop on Algorithms and Architectures for Real-Time Control AARTC95 (Ostende, Belgium, 1995), pp. 59–68.

    Google Scholar 

  16. Slotine, J.J. and W. Li. On Adaptative Control of Robot Manipulators., Int. J. Robotics Research, vol. 6. no. 3. pp. 49–59 (1987).

    Google Scholar 

  17. Spong, M. W. and M. Vidyasagar. Robot Dynamics And Control., (John Wiley & Sons, 1989).

    Google Scholar 

  18. Tarn, T., A.K. Bejczy, A. Isidori and Y.L. Chen. Nonlinear feedback in robot arm control, Proc. of the 23rd IEEE Conf. on Decision and Control. 1984).

    Google Scholar 

  19. Verdier, M., M. Rouff and J.G. Fontaine. Nonlinear control robot: A phenomenological approach to linearization by static feedback., Robotica, vol. 7. pp. 315–321 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, J.C., Peñalver, L., Sobejano, M., Martínez, J., Hernández, V., Tornero, J. (1997). An interface based on transputers to simulate the dynamic equation of robot manipulators using parallel computing. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_130

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_130

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics