Lecture Notes in Computer Science 1220

Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

Peter Brezany

Input/Output Intensive
Massively
Parallel Computing

Language Support,
Automatic Parallelization,
Advanced Optimization,
and Runtime Systems

)y Springer

Series Editors
Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Author

Peter Brezany

Institute for Software Technology and Parallel Systems
University of Vienna

Liechtensteinstrasse 22, A-1090 Vienna, Austria
E-mail: brezany @parunivie.ac.at

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Brezany, Peter:
Input output intensive massively parallel computing : language
support, automatic parallelization, advanced optimization, and runtime
sytems / Peter Brezany. - Berlin ; Heidelberg ; New York ; Barcelona
; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ;
Singapore ; Tokyo : Springer, 1997

(Lecture notes in computer science ; Vol. 1220)

ISBN 3-540-62840-1 kart.

CR Subject Classification (1991): D.3,D.1.3,D.4.2,C.1.2,F1.2, B.3.2,
D.44,G.1

ISSN 0302-9743
ISBN 3-540-62840-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer - Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10549551 06/3142-543210 Printed on acid-free paper

To my wife Jarmila, children Zuzana and Jozef, my
mother Zuzana, and in memory of my father Jozef

Preface

Massively parallel processing is currently the most promising answer to the
quest for increased computer performance. This has resulted in the devel-
opment of new programming languages, and programming environments
and has significantly contributed to the design and production of power-
ful massively parallel supercomputers that are currently based mostly on the
distributed-memory architecture.

Traditionally, developments in high-performance computing have been
motivated by applications in which the need for high computational power
clearly dominated the requirements put on the input/output performance.
However, the most significant forces driving the development of high-perfor-
mance computing are emerging applications that require a supercomputer to
be able to process large amounts of data in sophisticated ways. Hardware ven-
dors responded to these new application requirements by developing highly
parallel massive storage systems.

However, after a decade of intensive study, the effective exploitation of
massive parallelism in computation and input/output is still a very difficult
problem. Most of the difficulties seem to lie in programming existing and
emerging complex applications for execution on a parallel machine.

The efficiency of concurrent programs depends critically on the proper uti-
lization of specific architectural features of the underlying hardware, which
makes automatic support of the program development process highly desiz-
able. Work in the field of programming environments for supercomputers
spans several areas, including the design of new programming languages and
the development of runtime systems that support execution of parallel codes
and supercompilers that transform codes written in a sequential program-
ming language into equivalent parallel codes that can be efficiently executed
on a target machine. The focus of this book is just in these areas; it concen-
trates on the automatic parallelization of numerical programs for large-scale
input/output intensive scientific and engineering applications. The principles
and methods that are presented in the book are oriented towards typical
distributed-memory architectures and their input/output systems.

The book addresses primarily researchers and system developers working
in the field of programming environments for parallel computers. The book
will also be of great value to advanced application programmers wishing to
gain insight into the state of the art in parallel programming.

VIII

Since Fortran plays a dominant role in the world of high-performance
programming of scientific and engineering applications, it has been chosen as
the basis for the presentation of the material in the text.

For full understanding of the contents of the book it is necessary that the
reader has a working knowledge of Fortran or a similar procedural high-level
programming language and a basic knowledge of machine architectures and
compilers for sequential machines.

The book’s development In writing this book, I utilized the results of
my work achieved during research and development in the European Strate-
gic Program for Research and Development in Information Technology (ES-
PRIT), in particular, ESPRIT Projects GENESIS, PPPE, and PREPARE.
Most of the methods and techniques presented in the book have been success-
fully verified by a prototype or product implementation or are being applied
in on-going projects. Topics related to parallel input/output have been the
basis for the proposals of new research projects that start at the University
of Vienna this year.

The material of the book has been covered in courses at the University
of Vienna given to students of computer science and in the Advanced Course
on Languages, Compilers, and Programming Environments given to advanced
developers of parallel software.

Contents of the book Each chapter begins with an overview of the material
covered and introduces its main topics with the aim of providing an overview
of the subject matter. The concluding section typically points out problems
and alternative approaches, discusses related work, and gives references. This
scheme is not applied if a chapter includes extensive sections. In this case, each
section is concluded by a discussion of related work. Some sections present
experimental results from template codes taken from real applications, to
demonstrate the efficiency of the techniques presented.

Chapter 1 provides motivation, a brief survey of the state of the art in pro-
gramming distributed-memory systems, and lists the main topics addressed in
the book. Input/Qutput requirements of the current Great Challenge applica-
tions are illustrated in three examples which are both I/O and computational
intensive: earthquake ground motion modeling, analysis of data collected by
the Magellan spacecraft, and modeling atmosphere and oceans.

Chapter 2 specifies a new parallel machine model that reflects the tech-
nology trends underlying current massively parallel architectures. Using this
machine model, the chapter further classifies the main models used for pro-
gramiming distributed-memory systems and discusses the programming style
associated with each model.

The core of the book consists of chapters 3-7. While the first chapter
deals with programming language support, the subsequent three chapters
show how programs are actually transformed into paralle] form and specify
requirements on the runtime system. Chapter 7 develops new concepts for an
advanced runtime support for massively parallel I/O operations.

X

Chapter 3 describes Vienna Fortran 90, a high-performance data-paralle]
language that provides advanced support both for distributed computing
and the operations on files stored in massively parallel storage systems. In
this chapter the presentation is mainly focused on the language extensions
concerning parallel I/0.

Chapter 4 first describes the principal tasks of automatic parallelization of
regular and irregular in-core programs and then addresses several important
optimization issues. In-core programs are able to store all their data in main
memory.

Chapter 5 deals with basic compilation and optimizations of explicit paral-
lel I/O operations inserted into the program by the application programmer.

Chapter 6 treats the problem of transforming regular and irregular out-
of-core Vienna Fortran 90 programs into out-of-core message-passing form.
QOut-of-core programs operate on significantly more data (large data arrays)
that can be held in main memory. Hence, parts of data need to be swapped
to disks.

Compilation principles and methods are presented in chapters 5 and 6 in
the context of the VFCS (Vienna Fortran Compilation System).

Chapter 7 proposes an advanced runtime system referred to as VIPIOS
(Vienna Parallel Input/Output System) which is based on concepts developed
in data engineering technology.

Chapter 8 (conclusion) presents some ideas about the future development
of programming environments for parallel computer systems.

Acknowledgements Many people deserve thanks for their assistance, en-
couragement, and advice. In particular, I thank Hans Zima for giving me the
opportunity to work on the ambitious research and development projects and
for his encouragement. I am grateful to Michael Gerndt (KFA Jiilich), Erich
Schikuta, and Thomas Miick (both from the Department for Data Enginee-
ring of the University of Vienna), Joel Saltz (University of Maryland), and
Alok Choudhary (Northwestern University, Evanston) for many stimulating
discussions and suggestions, and to Viera Sipkova for the implementation of
several parallelization methods introduced in this book within the Vienna
Fortran Compilation System. Thanks also go to Minh Dang and Ka Heng
Wong for carrying out many performance measurements to demonstrate the
efliciency of the techniques presented in the book.

It is also a pleasure to thank colleagues from GMD Bonn, GMD FIRST
Berlin, GMD Karlsruhe, Parsytec Aachen, TNO Delft, ACE Amsterdam, TU
Munich, INRIA Rennes, Steria Paris, University of Liverpool, and University
of Southhampton with whom I have cooperated in the ESPRIT projects
GENESIS, PREPARE, and PPPE.

January 1997 Peter Brezany

Table of Contents

Preface VII
1. Imtroduction, 1
1.1 1/O Requirements of Parallel Scientific Applications 2
1.1.1 Earthquake Ground Motion Modeling 5
1.1.2 Image Analysis of Planetary Data 5
1.1.3 Climate Prediction, 6
1.1.4 Summary......... ... i, e 6
1.2 State-of-the-Art and Statement of the Problems 6
1.3 The Central Problem Areas Addressed in this Book......... 11
2. Parallel Programming Models 13
2.1 'The Parallel Machine Model 13
2.1.1 IMPA Model............... e 14
2.1.2 Matching the IMPA to Real Architectures 16
2.2 Programming Models for Distributed-Memory Systems 20
2.2.1 Message-Passing Programming Model 21
2.2.2 Data Parallel Programming Model.................. 22
2.2.3 Models Based on Coordination Mechanisms.......... 24
Bibliographical Notes i i, 24
3. Vienna Fortran 90 and Its Extensions for Parallel I/O 25
3.1 Language Model..... 25
3.1.1 Index Domain and Index Mapping.................. 26
3.1.2 Index Domain of an Array Section.................. 27
3.1.3 Data Distribution Model for Internal Memory........ 27
3.2 Language Constructsivuiviiroanennnnnnn... 29
3.2.1 Distribution Annotations 29
3.2.2 Alignment Annotations 32

3.2.3 Dynamic Distributions and the DISTRIBUTE State-
ment....... ..., e 32
3.2.4 Indirect Distribution 33
3.25 Procedures 35

3.26 FORALL Loop..........covii i .. 36

X1I

Table of Contents

3.2.7 Reduction Operators.o ... 37
3.2.8 User-Defined Distribution Functions 38
3.2.9 Support for Sparse Matrix Computation............. 38
3.3 Controlling Parallel I/O Operations. 42
3.3.1 The File Processing Model 43
3.3.2 User’s Perspective i 45
3.3.3 Data Distribution Model for External Memory 46
3.34 Opening aParallel File........................... 49
3.3.5 Write and Read Operations on Parallel Files 58
3.36 I/OAlignmentc.iviniii .. 60
3.3.7 Other I/O Statements 60
3.3.8 Intrinsic Procedures 60
3.3.9 Experiments 61
34 Out-of-Core Annotation 68
3.4.1 User Controlled Mode 69
34.2 AutomaticMode i 72
Bibliographical Notes 73
Compiling In-Core Programs 75
4.1 Parallelizing Compilation Systems 75
4.2 Parallelization Strategies for Regular Codes 79
4.2.1 Parallelization of Loops 80
4,2.2 Adaptation of Array Statements.................... 91
Bibliographical Notes 98
4.3 Parallelization of Irregular Codes 100

4.3.1 Irregular Code Example: Computatlon on an Unstruc-
tured Mesh oo 101

4.3.2 Programming Environment for Processing Irregular
Codes. ... e 103
433 Working Example L. 106
4.3.4 Distribution Descriptors. 107
4.3.5 Physical Data Redistribution 119
4.3.6 Work Distributor, Inspector and Executor 110

4.3.7 Handling Arrays with Multi-Dimensional Distribu-
tions and General Accesses 116
4.3.8 Runtime Support........c.c.oooiiiiiiiiiii... 120
4.3.9 Optimizations...........oooiiiieei ... 120
4.3.10 Performance Results 123
Bibliographical Noteso il 124
4.4 Coupling Parallel Data and Work Partitioners to the Compiler125
4.4.1 Towards Parallel Data and Work Partitioning 128
4.4,2 Partitioners of the CHAOS Runtime Library 130
4.4.3 High Level Language Interface 131

4.4.4 Interactive Specification of the Partitioning Strategy .. 133
4.4.5 Implementationlssues, 133

Table of Contents XIII

4.4.6 TIllustration of the Approach 135
4.47 Performance Results 140
Bibliographical Notes 142
4.5 Compile Time Optimizations for Irregular Codes 142
4.5.1 Introductionc.ovveiiimvonroiennneennn. 142
4.5.2 Partial Redundancy Elimination 144
4.5.3 Specifiers of the Candidates for Placement........... 147
4.5.4 Influencers of the Candidate for Placement 149
4.5.5 The Form of Specifiers e 150
4.5.6 Intraprocedural Optimizations 153
4.5.7 Interprocedural Optimizations 163
Bibliographical Notes 167
Compiling Parallel I/0 Operations 169
5.1 Direct I/O Compilation 170
5.1.1 OPEN Statement.......... 170
5.1.2 WRITE Statement 172
5.1.3 READ Statement, 174
5.2 Optimizing I/O Compilation 174
5.2.1 I/O Communication Descriptors.................... 176
5.2.2 Automatic Determination of I/O Distribution Hints .. 177
5.2.3 Overlapping I/O with Computation................. 178
5.2.4 Running I/O Concurrently with Computation and
Other I/O oo 178
Bibliographical Notes 181
Compiling Out-of-Core Programs 183
6.1 Models for Out-of-Core Computations..................... 184
6.1.1 Local Placement Model 186
6.1.2 Global Placement Model 187
6.1.3 Partitioned In-core Model 189
6.1.4 Model Based on a Parallel Array Database 180
6.2 Compilation Strategy i 191
6.3 Specification of the Application Area................... ... 192
6.4 Compiling Out-of-Core Regular Codes 193
6.4.1 Out-of-Core Restructuring Techniques Applied to Loosely
Synchronous Computations 193
6.4.2 Out-of-Core Restructuring Techniques Applied to Pipelined
Computations................ ... 197
6.4.3 Optimizations for Out-of-Core Regular Codes 197
6.5 Parallelization Methods for Qut-of-Core Irregular Problems .. 202
6.5.1 Problem Description and Assumptions 203
6.5.2 Data Arrays are In-Core and Indirection/Interaction
Arrays Qut-of-Core vin.. 205

6.5.3 Experimentso, 214

X1V Table of Contents

6.5.4 Generalization of Irregular Out-of-Core Problems. 217

6.6 Support for I/O Oriented Software-Controlled Prefetching ... 226
5.6.1 Compiler-Directed Data Prefetching e 227
6.6.2 Data Prefetching Based on Prefetch Adaptivity 229
Bibliographical Notes............. 233
7. Runtime System for Parallel Input-Output 235
7.1 Coupling the Runtime System to the VFCS 235
7.2 Data Mapping Model 237
7.2.1 Mapping Data Arrays to Computing Processors 238
7.2.2 Logical Storage Model 238
7.2.3 Physical Storage Model 239
7.2.4 Example of the Model Interpretation................ 240

7.3 Designofthe VIPIOS oo it 241
7.3.1 Design Objectives e 241
7.3.2 Process Model i 242

7.4 DataLocality 0o i 245
7.4.1 Logical Data Locality 245
7.4.2 Physical Data Locality 245

7.5 Two-Phase Data Administration Process 245
7.5.1 Preparation Phase........... ... i 246
7.5.2 Administration Phase 246

7.6 Basic Execution Profile.......o oL 246

7.7 VIPIOS Servers - Structure and Communication Scheme 250
7.7.1 Handling I/O Requests - Control ¥Flow and Data Flow

inthe VIPIOS 252
7.7.2 Implementation Notescooviiinenenenan. 254
Bibliographical Notes........ ..o 254

8. A New Generation Programming Environment for Parallel
Architectures i 257
8.1 OVEIVIEW ..ottt e 257
8.2 Compilation and Runtime Technology 258
8.3 Debugging System ... 260
8.3.1 Motivation oo 260
8.3.2 Design of a High-Level Symbolic Debugger 261
Bibliographical Notes i 266
Referencescourriniiinieeiianaee o, B 267

Subject Index e 283

