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Preface

Massively parallel processing is currently the most promising answer to the
quest for increased computer performance. This has resulted in the devel-
opment of new programming languages, and programming environments
and has significantly contributed to the design and production of power-
ful massively parallel supercomputers that are currently based mostly on the
distributed-memory architecture.

Traditionally, developments in high-performance computing have been
motivated by applications in which the need for high computational power
clearly dominated the requirements put on the input/output performance.
However, the most significant forces driving the development of high-perfor-
mance computing are emerging applications that require a supercomputer to
be able to process large amounts of data in sophisticated ways. Hardware ven-
dors responded to these new application requirements by developing highly
parallel massive storage systems.

However, after a decade of intensive study, the effective exploitation of
massive parallelism in computation and input/output is still a very difficult
problem. Most of the difficulties seem to lie in programming existing and
emerging complex applications for execution on a parallel machine.

The efficiency of concurrent programs depends critically on the proper uti-
lization of specific architectural features of the underlying hardware, which
makes automatic support of the program development process highly desiz-
able. Work in the field of programming environments for supercomputers
spans several areas, including the design of new programming languages and
the development of runtime systems that support execution of parallel codes
and supercompilers that transform codes written in a sequential program-
ming language into equivalent parallel codes that can be efficiently executed
on a target machine. The focus of this book is just in these areas; it concen-
trates on the automatic parallelization of numerical programs for large-scale
input/output intensive scientific and engineering applications. The principles
and methods that are presented in the book are oriented towards typical
distributed-memory architectures and their input/output systems.

The book addresses primarily researchers and system developers working
in the field of programming environments for parallel computers. The book
will also be of great value to advanced application programmers wishing to
gain insight into the state of the art in parallel programming.



VIII

Since Fortran plays a dominant role in the world of high-performance
programming of scientific and engineering applications, it has been chosen as
the basis for the presentation of the material in the text.

For full understanding of the contents of the book it is necessary that the
reader has a working knowledge of Fortran or a similar procedural high-level
programming language and a basic knowledge of machine architectures and
compilers for sequential machines.

The book’s development In writing this book, I utilized the results of
my work achieved during research and development in the European Strate-
gic Program for Research and Development in Information Technology (ES-
PRIT), in particular, ESPRIT Projects GENESIS, PPPE, and PREPARE.
Most of the methods and techniques presented in the book have been success-
fully verified by a prototype or product implementation or are being applied
in on-going projects. Topics related to parallel input/output have been the
basis for the proposals of new research projects that start at the University
of Vienna this year.

The material of the book has been covered in courses at the University
of Vienna given to students of computer science and in the Advanced Course
on Languages, Compilers, and Programming Environments given to advanced
developers of parallel software.

Contents of the book Each chapter begins with an overview of the material
covered and introduces its main topics with the aim of providing an overview
of the subject matter. The concluding section typically points out problems
and alternative approaches, discusses related work, and gives references. This
scheme is not applied if a chapter includes extensive sections. In this case, each
section is concluded by a discussion of related work. Some sections present
experimental results from template codes taken from real applications, to
demonstrate the efficiency of the techniques presented.

Chapter 1 provides motivation, a brief survey of the state of the art in pro-
gramming distributed-memory systems, and lists the main topics addressed in
the book. Input/Qutput requirements of the current Great Challenge applica-
tions are illustrated in three examples which are both I/O and computational
intensive: earthquake ground motion modeling, analysis of data collected by
the Magellan spacecraft, and modeling atmosphere and oceans.

Chapter 2 specifies a new parallel machine model that reflects the tech-
nology trends underlying current massively parallel architectures. Using this
machine model, the chapter further classifies the main models used for pro-
gramiming distributed-memory systems and discusses the programming style
associated with each model.

The core of the book consists of chapters 3-7. While the first chapter
deals with programming language support, the subsequent three chapters
show how programs are actually transformed into paralle] form and specify
requirements on the runtime system. Chapter 7 develops new concepts for an
advanced runtime support for massively parallel I/O operations.
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Chapter 3 describes Vienna Fortran 90, a high-performance data-paralle]
language that provides advanced support both for distributed computing
and the operations on files stored in massively parallel storage systems. In
this chapter the presentation is mainly focused on the language extensions
concerning parallel I/0.

Chapter 4 first describes the principal tasks of automatic parallelization of
regular and irregular in-core programs and then addresses several important
optimization issues. In-core programs are able to store all their data in main
memory.

Chapter 5 deals with basic compilation and optimizations of explicit paral-
lel I/O operations inserted into the program by the application programmer.

Chapter 6 treats the problem of transforming regular and irregular out-
of-core Vienna Fortran 90 programs into out-of-core message-passing form.
QOut-of-core programs operate on significantly more data (large data arrays)
that can be held in main memory. Hence, parts of data need to be swapped
to disks.

Compilation principles and methods are presented in chapters 5 and 6 in
the context of the VFCS (Vienna Fortran Compilation System).

Chapter 7 proposes an advanced runtime system referred to as VIPIOS
(Vienna Parallel Input/Output System) which is based on concepts developed
in data engineering technology.

Chapter 8 (conclusion) presents some ideas about the future development
of programming environments for parallel computer systems.
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