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A b s t r a c t .  We are developing the GRG knowledge discovery system 
for learning decision rules from relational databases. The GRG system 
generalizes data, reduces the number of attributes, and generates decision 
Ialles. A subsystem of this software learns decision rifles using familiar 
and novel rifle induction techniques and uses these rules to make deci- 
sions. This paper provides an overview of GRG, describes those aspects 
of the system most relevant to creating and using decision rules, and 
compares it to other machine learning approaches. 

1 I n t r o d u c t i o n  

The GRG software system is being designed for knowledge discovery from large 
relational databases (Shan et al. 1996). Knowledge discovery in databases (KDD) 
is "the nontrivial extraction of implicit, previously unknown, and potentially use- 
ful information from data" (Piatetsky-Shapiro et al. 1991). Knowledge discovery 
integrates techniques from statistics, machine learning, logic, and rough sets 
(Fayyad et al. 1996a; Fayyad et al. 1996b; Ziarko 1994). The central question in 
knowledge discovery research is how to turn information, expressed in terms of 
stored data, into knowledge expressed in terms of generalized statements about 
characteristics of the data. Including a machine learning technique in a knowl- 
edge discovery system requires addressing the issues of computational efficiency 
(to deal with the large amounts of data in databases) and robustness (to cope 
with missing or "noisy" data). In GRG, efficiency is obtained by generalizing the 
data  to reduce its size and robustness is obtained as described in this paper. 

Each of the three steps in the GRG system, information generalization, in- 
formation reduction, and rule generation, transforms the data  from the database 
to a higher level of abstraction. By integrating three approaches, we significantly 
reduce the computational complexity of analyzing large databases. In the first 
step, an attribute-oriented concept tree ascension technique (Cai et al. 1991) gen- 
eralizes the data (either a complete relational database or a relation extracted 
by a query from a database). An O(n) generalization algorithm is used for effi- 
ciency (Carter and Hamilton 1997). This generalization loses some information 
but substantially improves the efficiency of the following steps. 
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Feature selection (or attribute reduction) is the problem of choosing a small 
subset of attributes that ideally is necessary and sufficient to describe the con- 
cept. Feature selection accelerates learning and improves learning quality. We 
need a reliable and practically efficient method to eliminate irrelevant attributes. 
In the second step of GRG, a reduction technique (Pawlak 1991; Shan et al. 1995) 
generates a minimalized version of the data, called a reduct, which contains a 
minimal subset of the generalized attributes and a minimum number of distinct 
rows (tuples) for that subset. Details are given by Shan et al. (1996). 

In the third step of GRG (see Section 3), a set of decision rules is derived from 
the reduct. Many approaches are based on "divide-and-conquer" (Quinlan 1986) 
or "separate-and-conquer" (Clark and Niblett 1989; Michalski 1983). The former 
recursively partitions the instance space until each remaining, small instance 
space belongs to a roughly uniform concept. The latter induces one rule at a 
time and removes the instances covered by this rule until no more rules can be 
generated. Such methods suffer from the splintering problem, where decisions 
are made with decreasing statistical support as the size of the sample dwindles. 
Statistical anomalies become harder to weed out, and noise sensitivity increases. 
Overfitting occurs, incorrect rules may be generated, and prediction accuracy is 
decreased (Domingos 1995; Holte et al. 1989). The "conquer-without-separating" 
strategy used in GRG and other systems (Domingos 1995; Ziarko and Shan 1995) 
can alleviate the splintering problem. It uses statistical measures to combat noise, 
because each rule is generated while taking into consideration the entire data 
set. Missing values are handled without being replaced by artificial values, since 
each equivalence class is accounted for as a specific rule being generated. 

The decision rules embody the general patterns within the database, and 
can be used to interpret and understand the active mechanisms underlying the 
database. The technique for making decisions with these rules is described in Sec- 
tion 4. An empirical comparison between GRG and C4.5 on well-known machine 
learning problems is given in Section 5, and conclusions are drawn in Section 6. 

2 P r e l i m i n a r y  S t a g e s  

The GRG system investigates the relationship between two, user-defined groups 
of attributes, referred to as condition attributes C and decision attributes D. 
Given a set I of input instances (rows), the following preliminary steps are per- 
formed: (1) generalize all values according to user-defined concept hierarchies 
(Ning et al. 1996) and discretization functions (Ning et al. 1997); (2) convert all 
multivalued attributes in I into binary attributes (let m be the number of con- 
dition attributes in the result); (3) create separate decision tables DT1, . . . ,  DTd 
for each of d decision attributes; (4) delete all duplicate instances (rows) from 
DT1, . . . ,  DTd; (5) delete redundant condition attributes from each decision table 
using the attribute reduction procedure described by Ning et al. (1996). The re- 
sult of these five preliminary steps is to decomposes the original problem, with d 
possible values for the decision attribute (or combination of decision attributes), 
into d subproblems, each with a binary decision attribute. 
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3 R u l e  G e n e r a t i o n  

Rule generation is a key step in GRG. Each instance (row) in a decision table Di 
can considered as a specific rule that  matches only one equivalence class. When 
taking this view, we refer to the decision table Di as a set R of rules. Such a rule 
can be generalized by removing conditions from the condition part  of the rule. 
GRG's  rule generation first checks whether a rule can be made more general by 
eliminating irrelevant attr ibute values. An attr ibute value in a rule is irrelevant 
if it can be removed from the rule without decreasing its expected classification 
accuracy, as computed from D~. The resulting rules are called maximally general 
rules (or minimal rules) because each rule has the minimum number of conditions 
required to preserve the classification accuracy of the rule. 

More technically, if r~ and r d are valid rules where cond(r~) = cond(rj) and 
dec(r~) = dec(rj), then ri and r d are logically equivalent rules, where cond and 
dec give the values of the condition and decision attributes, respectively. If rl 
and r d are valid rules where cond(r~) C cond(rj) and dec(r~) = dec(rj), then rj 
is logically included in r~. If r~ and rj are valid rules where cond(r~) C cond(rj) 
and dec(r~) ~ dec(rj), then ri and rj are decision inconsistent. 

To obtain a set of maximally general rules R/, each rule r E R is considered 
for dropping conditions. The algorithm initializes R ~ to empty and copies one 
rule r~ E R to rule r. One by one, each condition is dropped from rule r to create 
a new rule, and then this rule is checked for decision consistency with every other 
rule r d E/~. If rule r is inconsistent, then the dropped condition is restored. After 
all conditions have been examined, the resulting rule r is a maximally generalized 
rule. Before rule r is added to R ~, it is checked for redundancy. After all rules 
have been processed, R ~ contains a set of maximally general rules that  are as 
general as possible but retain the same classification accuracy as R. 

A specific rule r E R may correspond to more than one maximally gen- 
eral rule. The maximally general rule derived depends on the order in which 
the attributes are processed. Thus, the maximally general rule obtained may 
not be best with respect to the conciseness or the coverage of the rule. Rather 
than evaluate all 2 m - 1 possible subsets of conditions for a rule with m con- 
ditions, we use a heuristic solution based on significance values assigned by an 
evaluation function to every condition, before starting the process of dropping 
conditions. The significance value for a condition represents the relevance of 
the condition for the particular class. Higher significance values indicate greater 
relevance. In post-pruning (Quinlan 1993), conditions with lower significance 
values are dropped first. One evaluation function for a condition ci of a rule is: 
SIG(ci) = P(ci)(P(Dlci ) - P(D)), where P(c~) is the probability of occurrence 
of the condition ci; P(D[ci) is the conditional probability of the occurrence of 
the concept D conditioned on the occurrence of the condition ci; P(D) is the 
proportion of the concept D in the database (Ziarko and Shan 1995). 

An alternative evaluation function, introduced here, is: SIG~(c~) = P(cond-  
{ci})(P(Dlcond- {ci}) - P(D)). Conditions with higher significance values are 
tested for dropping first. If a condition is dropped, the significance values of the 
remaining conditions are updated. 
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Algor i t hm G E N R U L E S :  Computes a set of maximally generalized rules. 
Inpu t :  A set R of specific decision rules 
O u t p u t :  A set R' of maximally general rules 

R' +--0 
n <-- IRI /* n is the number of rules in R */ 
f o r i - - 0 t o n - 1  do 

r+-rl 
m +-- Ir] /* m is the number of attributes in rule r */ 
Compute the significance value SIG ~ for each condition of rule r 
Sort the set of conditions of nile r based on the significance values 
for j = 0 to m -  1 do 

Remove the jtn condition attribute Cj in rule r 
if  r inconsistent with any rule in R - r~ then  

Restore the dropped condition Cj to rule r 
endi f  

endfor  
Remove any rule r ~ E R ~ that is logically included in nile r 
if  rule r is not logically equivalent to or included in any rule r '  E R ~ t hen  

R' +- R'~r 
endi f  

endfor  

Suppose there are n decision rules (i.e., n rows) with m at tr ibutes in the 
set of rules R. The computat ion of the significance value, SIG' ,  for one rule re- 
quires O(mn) and the process of dropping conditions of one rule requires 0 (ran). 
Thus, finding a maximal ly  general rule for one decision rule requires O(mn) t ime 
and finding maximal ly  general rules for n decision rules requires O(mn 2) t ime. 
Eliminating redundant rules is O(n2). The t ime complexity of our algori thm is 
O(mn 2 + n 2) = O(mn2). 

4 Decision Making 

Given a set of objects described by several attributes,  the decision making prob- 
lem consists of assigning to each object an appropriate  decision value, i.e., classi- 
fying each object to an appropriate  concept. This classification problem has been 
studied extensively and the approach described in the previous section is but  one 
of many  induction techniques suggested for creating decision rules. The general 
question of how to use such decision rules in the process of decision support  has 
received less attention. A simple approach is adopted by m a n y  systems. Given 
an input object, a rule whose conditions are satisfied by this object, is selected. 
Typically, the first such rule is selected, although some approaches examine the 
support  of the relevant rules, and choose the best supported rule. These sys- 
tems use a single rule to suggest a decision and tend to minimize the number  of 
rules used. In general, these approaches ignore the fact tha t  the rules produced 
from data  are inherently uncertain and the associated decision probabilities (if 
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computed at all) are only crude estimates, rather weakly supported by available 
data. 

On the other hand, the approach implemented in GRG and described below 
treats each rule as a piece of uncertain evidence, which by itself is of little value 
with respect to decision making, but  which jointly with other rules can provide 
valuable input to the decision process. GRG uses as much evidence as possible 
in its decision making and tends to maximize the number of rules used. Such 
evidence can be combined in many ways, and our method is but one possibility. 

We first define the criterion Q(r) for rule quality. Let [D = 1] denote the 
set of rows where the value of the decision attribute is 1, and let [r] denote the 
set of rows where the values of the condition attributes are consistent with the 
condition part  of rule r. Q(r) is based on estimates of the following conditional 
probabilities: 

(1) P(rclD = 1), the probability that  the values of the condition attributes for 
an input object are consistent with the condition part of rule r, if the value 
of the decision attribute is 1; 

(2) P(D = 1Ire), the probability that  the value of the decision at tr ibute D is 
1 for an input object, if the values of the condition attributes for the input 
object are consistent with the condition part of rule r; 

(3) P(rclD = 0), defined analogously. 
(4) P(D = 0lrc), defined analogously. 

Intuitively, if the random events rc and (D = 1) are related, then measures 
(1) and (2) should yield high values and measures (3) and (4) should yield low 
values. Based on this intuition, the quality criterion is defined a s :  

O(r) -- (P(rlD = 1) + P(D = lit ) - P(rlD = O) - P(D = 0lr))/2 

Clearly, - 1  ___ Q(r) < 1. Q(r) can be seen as a measure of the bias of the set 
[r] towards the set [D = 1]. This measure has two extremes: (1) Q(r) = 1 if 
[r] = [D = 1], and (2) Q(r) = - 1  if [r] = [D = 0]. 

During rule generation, a collection of d rule sets corresponding to d pos- 
sible decisions is created. Each set is used in turn as the current set, Lh (k = 
1 , 2 , . . . ,  d). To handle objects which do not match any rule, we add a default 
rule, which predicts the concept that  appears most frequently in the database. 
Let X denote the input vector of condition attribute values, and let Lk (X) C_ L~ 
be a subset of the current set La consisting of those rules whose conditions are 
satisfied by values of the input vector X. To select one of rn possible decisions 
for X, a promising approach is to compute a decision score Sk(X), for every 
k = 1, 2 , . . . , d ,  as follows: 

s~(x)= X~ Ok(r). 
rELk(X) 

This approach sums the rule quality measures Qk (r) computed for each rule. 
Then, the decision with the highest score is selected. 

As given, this approach is sensitive to the number of rules in each set Lk 
(k = 1, 2 , . . . ,  d). To eliminate this sensitivity, we use the normalized decision 
score, defined as: 
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where 

and 

(- ~ i f S k ( X ) < O  
NS~(X)= ~ ~v~ 

I zk(x) ifSk(X)>O 
' k  Mk 

L + = {r e Lk: Qk(r) > 0}, 

L~---{r ELk :Qk(r) ~0}. 

With the normalized definition we have -1  _~ NSk (X) ~_ 1. 
During decision making, the decision with the normalized decision score clos- 

est to 1 is selected. That is, in extreme cases: 
NSe(X) = 1 indicates a strong "yes" for the decision k; 
NSk(X) = --1 indicates a strong "no" for the decision k; and 
NSk (X) = 0 indicates insufficient evidence for decision k. 

5 Experimental Results 

To evaluate the machine learning subsystem of GRG, we measured the prediction 
accuracy of the learned rules on test examples. We also compared this accuracy 
to that for C4.5RULE, the "rule" portion of the output generated by C4.5 run 
with default settings (Quinlan 1993). We chose 20 databases from the UC Irvine 
repository. Each database is stored and processed as a single relation table. 

For our experiments, we used leave-one-out cross validation for each method 
on each database. Given a data set containing n objects, leave-one-out testing 
removes one object, generates rules using the remaining n - 1  objects as a training 
sample, and tests these rules using the removed object as a test object. This 
procedure is repeated n times, using each object in turn. The prediction accuracy 
is calculated as the number of correctly classified objects divided by n. Leave-one- 

o u t  testing is computationally expensive, but it gives a more reliable estimate 
of prediction accuracy than other approaches. Given the same algorithm and 
data set, leave-one-out testing always reports the same prediction accuracy. On 
the other hand, the more commonly used ten-fold testing strategy randomly 
partitions the data set into ten subsets and uses each in turn as a training 
sample. When applied repeatedly to the same algorithm, this method yields 
varying results because different random subsets are chosen. 

Table 1 shows the results from the experiments described above; details are 
given by Shan et al. (1997). In each case, the better result is shown in bold 
face. For each database and algorithm, we report the prediction accuracy as 
determined by leave-one-out testing. On some databases, the behavior of the 



240 

)a ta  Set Size #classes] GRG C4.5 
1 

106 2 93.40 84.91 
690 2 82.03 82.75 
625 3 79.36 77.28 
699 2 96.28 96.00 
690 2 84.93 84.49 

!1000 2 72.30 72.50 
214 7 92.06 71.50 
270 2 77.04 74.44 
506 2 85.38 83.20 

! 351 2 93.16 94.87 
! 150 3 96.00 95.33 

24 3 79.17 83.33 
32 3 59.38 50.00 

768 2 69.53 74.87 
2310 7 95.76 96,10 

15 2 66,67 40.00 
47 4 95.74 97,87 

958 2 98.75 99,48 
178 3 97.19 92.70 
101 7 94.06 93.06 

~ppend 
mstralian 
)alance-scale 
Jreast-cancer (wisconsin) 
:redit-screening 
~erman 
~lass 
heart 
housing 
onosphere 
ris 
. e a s e s  

ung-cancer 
)ima 
;egment 
;huttle 
;oybean-small 
;ictac 
~ine 
~oo 

Table  1. Experimental Results 

GRG system and C4.5RULE is similar. On 4 out of 20 databases, the GRG 
system has a considerably higher prediction accuracy than C4.5RULE. Overall, 
the prediction accuracy is higher for GRG than for C4 .5RULE 

6 C o n c l u s i o n s  

We have described the techniques used to create and use decision rules in the 
GRG knowledge discovery system. Experiments show that ,  when tested on 20 
databases, GRG has generally higher prediction accuracy than  C4.5RULE. We 
do not conclude tha t  GRG is better  for all applications than  C4.5RULE. Differ- 
ent systems will be suitable for different real-world domains. With  the growth 
of applications of knowledge discovery from databases, a variety of approaches 
are needed, and the techniques presented here provide a useful addition. 

In future work, we will s tudy a variety of measurements for a t t r ibute  se- 
lection. Rule generation may be improved by allowing the generation of more 
general rules. As well, better  results may  be obtained by relaxing the current re- 
quirement that  a general rule have the same classification accuracy as a specific 
rule. Finally, using partial  matching instead of full matching might  improve the 
prediction accuracy. 

We have presented an initial description of the theoretical properties and 
empirical performance of the GRG system considered as a machine learning sys- 
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tern. Further investigation is warranted to identify situations in which the system 
should perform well and appropriate settings for parameter values. Additional 
experiments on large data sets are required to determine how well the GRG 
system scales up. 
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