Abstract
The weak membrane model uses Markov Random Fields within the Bayesian inference framework for image reconstruction and segmentation problems. Recently, the model has been extended for the 4D Gabor feature vector space and was applied to texture segmentation. A limitation of this technique is that the parameters in the model have to be adjusted for each different input image and they are fixed throughout the image. This paper proposes a technique to alleviate this limitation by estimating the parameters using local feature statistics. The technique has the following desirable properties: 1) the whole segmentation process is done in an unsupervised fashion, 2) robustness to noise and contrast variation, and 3) increased connectivity of boundaries.
Research supported in part under ONR Grant No. N00014-94-1-1163 and ARO Grant No. DAAH04-96-10326.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Royal Statistical Soc., Ser. B, 36:192–236, 1974.
A. Blake. The least-disturbance principle and weak constraints. Pattern Recog. Lett., 1:393–399, 1983.
A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.
C. Bouman and B. Liu. Multiple resolution segmentation of textured images. IEEE Trans. Pattern Recog. and Machine Intel., 13(2):259–302, 1991.
P. Brodatz. Texture: A photographic album for artists and designers. Dover, NY. NY, 1966.
P. Chou and C. Brown. The theory and practice of Bayesian image labeling. Intern. J. Computer Vision, 4:185–210, 1990.
G. R. Cross and A. K. Jain. Markov random field texture models. IEEE Trans. Pattern Analysis and Machine Intel., 5(1):25–39, 1983.
J. G. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 20:847–856, 1980.
J. G. Daugman. Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional cortical filters. J. Optical Soc. Amer., 2(7):1160–1169, 1985.
H. Derin and H. Elliott. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. Pattern Analysis and Machine Intel., 9(1):39–55, 1987.
K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr. Cellular texture generation. In ACM Computer Graphics, Proc. SIGGRAPH '95, volume 29, pages 239–248, Los Angeles, CA, August 1995.
D. Geiger and F. Girosi. Parallel and deterministic algorithms from MRF's: Surface reconstruction. IEEE Trans. Pattern Analysis and Machine Intel., 13(5):401–412, 1991.
D. Geiger and A. Yuille. A common framework for image segmentation. Int. Journal of Computer Vision, 6(3):227–243, 1991.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intel., 6(6):721–741, 1984.
S. Geman, D. Geman, C. Graffigne, and P. Dong. Boundary detection by constrained optimization. IEEE Trans. Pattern Analysis and Machine Intel., 12(7):609–628, 1990.
A. K. Jain. Partial differential equations and finite difference methods in image processing-Part I: Image representation. J. Optimiz. Theory and Applications, 23:65–91, September 1977.
A. K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12):1167–1186, 1991.
A. K. Jain and J. R. Jain. Partial differential equations and finite difference methods in image processing-Part II: Image restoration. IEEE Trans. on Automatic Control, 23(5):596–613, October 1978.
A. K. Jain and S. G. Nadabar. MRF model-based segmentation of range images. In Proc. IEEE ICCV3, pages 667–671, Osaka, Japan, 1990.
I. Y. Kim and H. S. Yang. An integration scheme for image segmentation and labeling based on Markov random field model. IEEE Trans. Pattern Analysis and Machine Intel., 18(1):69–73, 1996.
S. Lakshmanan and H. Derin. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. Pattern Analysis and Machine Intel., 11:799–813, 1989.
T. S. Lee. A Bayesian framework for understanding texture segmentation in the primary visual cortex. Vision Res., 35(18):2643–2657, 1995.
S. Z. Li. Markov random field modeling in computer vision. Springer-Verlag, New York, NY, 1995.
S. G. Nadabar and A. K. Jain. Parameter estimation in Markov random field contextual models using geometric models of objects. IEEE Trans. Pattern Analysis and Machine Intel., 18(3):326–329, 1996.
N. E. Nahi and T. Assefi. Bayesian recursive image estimation. IEEE Trans. Comput., 21:734–737, July 1972.
P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intel., 12(7):629–639, 1990.
J. A. Stuller and B. Kurz. Two dimensional Markov representations of sampled images. IEEE Trans. Commun., 24:1148–1152, October 1976.
D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Analysis and Machine Intel., 8(4):413–424, July 1986.
D. Terzopoulos. The computation of visible-surface representations. IEEE Trans. Pattern Analysis and Machine Intel., 10(4):417–438, July 1988.
G. Turk. Generating textures for arbitrary surfaces using reaction-diffusion. In ACM Computer Graphics, Proc. SIGGRAPH '91, volume 25, pages 289–298, July 1991.
A. Witkin and M. Kass. Reaction-diffusion textures. In ACM Computer Graphics, Proc. SIGGRAPH '91, volume 25, pages 299–308, July 1991.
E. Wong. Two dimensional random fields and representation of images. SIAM J. Appl. Math, 16:756–770, July 1968.
J. W. Woods. Two dimensional discrete Markov fields. IEEE Trans. Inform. Th., 18:232–240, March 1972.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kubota, T., Huntsberger, T. (1997). Adaptive anisotropic parameter estimation in the weak membrane model. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_80
Download citation
DOI: https://doi.org/10.1007/3-540-62909-2_80
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62909-2
Online ISBN: 978-3-540-69042-9
eBook Packages: Springer Book Archive