Abstract
Multidimensional scaling addresses the problem how proximity data can be faithfully visualized as points in a low-dimensional Euclidian space. The quality of a data embedding is measured by a cost function called stress which compares proximity values with Euclidian distances of the respective points. We present a novel deterministic annealing algorithm to efficiently determine embedding coordinates for this continuous optimization problem. Experimental results demonstrate the superiority of the optimization technique compared to conventional gradient descent methods. Furthermore, we propose a transformation of dissimilarities to reduce the mismatch between a high-dimensional data space and a low-dimensional embedding space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Buhmann and T. Hofmann. Central and pairwise data clustering by competitive neural networks. In Advances in Neural Information Processing Systems 6, pages 104–111. Morgan Kaufmann Publishers, 1994.
J. M. Buhrnann and H. Kühnel. Vector quantization with complexity costs. IEEE Transactions on Information Theory, 39(4):1133–1145, July 1993.
T. F. Cox and M.A.A. Cox. Multidimensional Scaling. Number 59 in Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1994.
J. deLeeuw and I. Stoop. An upper bound for SSTRESS. Psychometrika, 51:149–153, 1986.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Ser. B (methodological), 39:1–38, 1977.
R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. PAMI, 6:721–741, 1984.
S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.
J.A. Hartigan. Representations of similarity matrices by trees. J.Am.Statist.Ass., 62:1140–1158, 1967.
E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106:620–630, 1957.
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.
H. Klock and J.M. Buhmann. Data visualization by multidimensional scaling: A deterministic annealing approach. Technical Report IAI-TR-96-8, UniversitÄt Bonn, Institut für Informatik III, Römerstra\e 194, October 1996.
Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, MÄrz 1964.
Joseph B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):115–129, Juni 1964.
R.M Neal and G.E. Hinton. A new view of the em algorithm that justifies incremental and other varienats. Submitted to Biometrica, 1993.
A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill, 1965.
William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numerical Recipes in C. Cambridge University Press, 2. edition, 1992.
B.D Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
K. Rose, E. Gurewitz, and G. Fox. Statistical mechanics and phase transitions in clustering. Physical Review Letters, 65(8):945–948, 1990.
J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comp., C-18(5):401–409, May 1969.
R.N. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function i. Psychometrica, 27:125–140, 1962.
M. W. Simmen, G.J. Goodhill, and D.J. Willshaw. Scaling and brain connectivity. Nature, 369:448–450, 1994.
Yoshio Takane and Forest W. Young. Nonmetric individul differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1):7–67, March 1977. ALSCAL.
T.Hofmann and J.M.Buhmann. Pairwise data clustering by deterministic annealing. IEEE Transactions on Pattern Analysis and Machine Intellegence, 1997. to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klock, H., Buhmann, J.M. (1997). Multidimensional scaling by deterministic annealing. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_84
Download citation
DOI: https://doi.org/10.1007/3-540-62909-2_84
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62909-2
Online ISBN: 978-3-540-69042-9
eBook Packages: Springer Book Archive