Skip to main content

Synthetic resampling methods for variance estimation in parametric images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1230))

  • 384 Accesses

Abstract

Parametric imaging procedures offer the possibility of comprehensive assessment of tissue metabolic activity. Estimating variances of these images is important for the development of inference procedures in a diagnostic setting. Unfortunately, the complexity of the radio-tracer models used in the generation of a parametric image makes analytic variance expressions intractable. A natural extension of the usual resampling approach is infeasible because of the computational effort. This paper suggests a computationally practical approximate simulation strategy to variance estimation. Results of experiments done to evaluate the approach in a simplified model one-dimensional problem are very encouraging. The suggested methodology is evaluated here in the context of parametric images extracted by mixture analysis; however, the approach is general enough to extend to other parametric imaging methods.

Research supported in part by the National Institutes of Health grant CA-57903 at the University of Washington, Seattle, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blomqvist, G., “On the Construction of Functional Maps in Positron Emission Tomography”, J. Cereb. Blood Flow and Metab., 4:629–32, 1984.

    Google Scholar 

  2. Blomqvist, G., Eriksson L., and Rosenqvist G., “The Effect of Spatial Correlation on Quantification in Positron Emission Tomography” Neuroimage, 2:2, 1995.

    Google Scholar 

  3. Carson, R. E., Yan, Y., Daube-Witherspoon, M. E., Freedman, N., Bacharach, S. L. and Herscovitch, P., “An Approximation Formula for the Variance of PET Region-of-Interest Values”, IEEE Trans. Med. Imag., 12:240–50, 1993.

    Google Scholar 

  4. Cunningham, V. J., and Jones, T., “Spectral Analysis of Dynamic PET Studies”, J. Cereb. Blood Flow and Metab., 13:15–23, 1993.

    Google Scholar 

  5. Choudhury, K. R. and O'Sullivan, F., “A Statistical Examination of FBP and ML for Estimating Mixture Models from Dynamic PET Data”, 1995 IEEE Nucl. Sci. Symp. and Med. Imag. Conf. Record, 3:1237–1241, 1995.

    Google Scholar 

  6. Efron, B., “The Jackknife, the Bootstrap and Other Resampling Plans”, SIAM, 1982.

    Google Scholar 

  7. Friedman, J. H., “A Variable Span Smoother”, Tech. Rep. No. 5, Lab. for Comp. Stat., Dept. of Stat., Stanford Univ., Stanford, CA, 1984.

    Google Scholar 

  8. Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak R. S., “Comparing Functional (PET) Images: The Assessment of Significant Change”, J. Cereb. Blood Flow Metab., 11:690–99, 1991.

    PubMed  Google Scholar 

  9. Gjedde, A., “High-and Low-affinity Transport of Glucose from Blood to Brain”, J. Neurochem., 36:1463–71, 1981.

    PubMed  Google Scholar 

  10. Gjedde, A., “Calculation of Cerebral Glucose Phosphorylation from Brain Uptake of glucose analogs in vivo: a re-examination”, Brain Res. Rev., 4:237–74, 1982.

    Google Scholar 

  11. Haynor, D. R. and Woods, S. D., “Resampling Estimates of Precision in Emission Tomography”, IEEE Trans. Med. Imag., 8:337–43, 1989.

    Google Scholar 

  12. Herholz, K. and Patlak, C. S., “The Influence of Tissue Heterogeneity on Results of Fitting Nonlinear Model Equations to Regional Tracer Uptake Curves. With an Application to Compartmental Models used in Positron Emission Tomography”, J. Cereb. Blood Flow Metab. 11:10–24, 1991.

    PubMed  Google Scholar 

  13. Herholz, K., “Non-stationary Spatial Filtering and Accelerated Curve-fitting for Parametric Imaging with Dynamic PET”, Eur. J. Nucl. Med., 14:477–84, 1988.

    PubMed  Google Scholar 

  14. Heiss, W. D., Kessler, J., Karbe, H., Fink, G. R., and Pawlik, G., “Cerebral Glucose Metabolism as a Predictor of Recovery from Aphasia in Ischemic Stroke”, Arch. Neurol., 50:958–64, 1993.

    PubMed  Google Scholar 

  15. Heiss, W. D., Kessler, J., Slansky, I., Mielke, R., Szelies, B., and Herholz, K., “Activation PET as an Instrument to Determine Theraupetic Efficacy in Alzheimer's Disease”, Ann. N. Y. Acad. Sci., 695:327–31, 1993.

    PubMed  Google Scholar 

  16. Maitra, R. and O'Sullivan, F., “Estimating the Variability of Reconstructed PET Data: A Technique Based on Approximating the Reconstruction Filter by a sum of Gaussian kernels”, 1995 IEEE Nucl. Sci. Symp. and Med. Imag. Conf. Record, 3:1411–14, 1995.

    Google Scholar 

  17. Maitra, R., “Variability Estimation in Linear Inverse Problems”, Ph. D. dissertation, Department of Statistics, University of Washington, 1996.

    Google Scholar 

  18. Maitra, R., “Estimating Precision in Functional Images”, J. Comp. Graph. and Stat., 6:1:1–11, 1997.

    Google Scholar 

  19. Maitra, R. amd O'Sullivan, F., “Variability Assessment in PET and Related Generalized Deconvolution Models”, J. Amer. Stat. Assoc., submitted, 1997.

    Google Scholar 

  20. O'Sullivan, F., “Imaging Radiotracer Model Parameters in PET: A Mixture Analysis Approach”, IEEE Trans. Med. Imag., 12:399–412, 1993.

    Google Scholar 

  21. O'Sullivan, F., Pawitan, Y. and Haynor, D., “Reducing Negativity Artifacts in Emission Tomography: Post-Processing Filtered Backprojection Solutions”, IEEE Trans. Med. Imag., 12:653–663, 1993.

    Google Scholar 

  22. O'Sullivan, F., “Metabolic Images from Dynamic Positron Emission Tomography studies”, Stat. Meth. in Med. Res., 3:87–101, 1994.

    Google Scholar 

  23. Patlak, C. S., Blasberg, R. G., and Fenstenmacher, J. D., “Graphical Evaluations of Blood-to-brain Transfer Constants from Multiple-time Uptake Data”, J. Cereb. Blood Flow Metab. 3:1–7, 1983.

    PubMed  Google Scholar 

  24. Schmidt, K., Miles, G. and Sokoloff, L., “Model of Kinetic Behavior of Deoxyglucose in Heterogeneous Tissuses in Brain: a Reinterpretation of the Significance of Parameters fitted to Homogeneous Tissue Models”, J. Cereb. Blood Flow Metab. 11:10–24, 1991.

    PubMed  Google Scholar 

  25. Vardi, Y., Shepp, L. A. and Kaufman, L. A., “Statistical model for Positron Emission Tomography”, J. Amer. Statis. Assoc., 80:8–37, 1985.

    Google Scholar 

  26. Worsley, K. J., Evans, A. C., Marrett, S. and Neelin, P., “A Three-dimensional Statistical Analysis for CBF Activation Atudies in Human Brain”, J. Cereb. Blood Flow Metab., 12:900–18, 1992.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Duncan Gene Gindi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maitra, R. (1997). Synthetic resampling methods for variance estimation in parametric images. In: Duncan, J., Gindi, G. (eds) Information Processing in Medical Imaging. IPMI 1997. Lecture Notes in Computer Science, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63046-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-63046-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63046-3

  • Online ISBN: 978-3-540-69070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics