Skip to main content

The Clause-Diffusion theorem prover Peers-mcd (system description)

  • Conference paper
  • First Online:
Automated Deduction—CADE-14 (CADE 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1249))

Included in the following conference series:

  • 250 Accesses

Abstract

Peers-mcd is a distributed theorem prover for equational logic with associativity and commutativity built-in. It is based on the Clause-Diffusion methodology for distributed deduction and the Argonne prover EQP. New features include ancestor-graph oriented criteria to subdivide the search among the parallel processes. Peers-mcd shows superlinear speed-up in a case study in Robbins algebra.

Supported in part by the National Science Foundation with grant CCR-94-08667.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition. In D. Kapur, editor, Proc. CADE-11, volume 607 of LNAI, pages 462–476. Springer, 1992.

    Google Scholar 

  2. M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a modified Clause-Diffusion method. J. of Symbolic Computation, 21:507–522, 1996.

    Article  MathSciNet  Google Scholar 

  3. M. P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for distributed deduction. Fundamenta Informaticae, 24:177–207, 1995.

    MathSciNet  MATH  Google Scholar 

  4. M. P. Bonacina and J. Hsiang. On the representation of dynamic search spaces in theorem proving. In C.-S. Yang, editor, Proc. Int. Computer Symp., Dec. 1996.

    Google Scholar 

  5. M. P. Bonacina and W. McCune. Distributed theorem proving by Peers. In A. Bundy, editor, Proc. CADE-12, volume 814 of LNAI, pages 841–845. Springer, 1994.

    Google Scholar 

  6. W. McCune. 33 Basic test problems: a practical evaluation of some paramodulation strategies. MCS Division, Argonne National Laboratory, Pre-print P618, 1996.

    Google Scholar 

  7. W. McCune. Solution of the Robbins problem. Submitted manuscript, 1996.

    Google Scholar 

  8. R. Niewenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Brückner, editor, Proc. ESOP, volume 582 of LNCS, pages 371–389. Springer, 1992.

    Google Scholar 

  9. S. Winker. Robbins algebra: Conditions that make a near-Boolean algebra Boolean. J. of Automated Reasoning, 6(4):465–489, 1990.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William McCune

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonacina, M.P. (1997). The Clause-Diffusion theorem prover Peers-mcd (system description). In: McCune, W. (eds) Automated Deduction—CADE-14. CADE 1997. Lecture Notes in Computer Science, vol 1249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63104-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-63104-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63104-0

  • Online ISBN: 978-3-540-69140-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics