
Implementing Semantic-Based Decomposition of
Transactions*

Sushil Jajodia, Indrakshi Ray and Paul Ammann

Center for Secure Information Systems
George Mason University, Fairfax, VA 22030-4444
Email: {jajodia, indrakshi, pammann} @gmu.edu

Abstract. In some database applications, performance requirements are not sat-
isfied by the traditional approach of serializability, in which transactions appear
to execute atomically and in isolation on a consistent database state. Although
many researchers have investigated the process of decomposing transactions into
steps to increase concurrency, the focus of the research is typically on imple-
menting a decomposition supplied by the database application developer, with
relatively little attention to what constitutes a desirable decomposition and how
the developer should obtain such a decomposition. In our research, we focus on
the decomposition process itself.
In [2], we introduced the notion of semantic histories and identified a number
of properties which must be satisfied by a decomposition if the decomposition
correctly models the original collection of transactions. We also formulated the
notion of successor sets to describe efficiently the correct interleavings of steps.
In this paper, we develop the successor set constraints more fully, and show how
they can be used to take full advantage of conflict serializability at the level of
steps. We give a graph-based characterization of correctness of successor set his-
tories, and show how a verified decomposition can be implemented in a two-phase
locking environment. We also discuss how the problems related to starvation,
deadlocks, and recovery could be addressed.

1 Introduction

Performance requirements can force a transaction to be decomposed into smaller logical
units (steps), especially if the transaction is long-lived. Consider the simple example of
making a hotel reservation. The reserve transaction might consist o f ensuring that there
are still rooms vacant, selecting a vacant room that matches the customer's preferences,
and recording billing information. Since the reserve transaction might last a relatively
long time - when the customer makes reservations by phone - an implementation might
force the three steps in the reserve transaction to occur separately.

The traditional transaction model relies on the properties of atomicity, consistency,
and isolation. Decomposing transactions into steps generally forces one to relinquish

* This work was partially supported by DARPA under grant number N0060-96--D-3202. The
work of S. Jajodia was also supported by NSF under grant number IRI-9633541 and by NSA
under grants M DA904-96-1-0103 and M DA904-96-1-0104. The work of I. Ray was also sup-
ported by a George Mason University Graduate Research Fellowship Award.

76

these three properties to some degree. Decomposition not only sacrifices atomicity,
since atomicity of the single logical action is lost, but impacts consistency and isola-
tion as well. Execution of a step may leave the database in an inconsistent state, which
may be viewed by other transactions or steps; therefore, it is necessary to reason about
the interleavings of the steps of different transactions. Although the step-by-step de-
composition of a single transaction may be understood in isolation, reasoning about the
interleaving of these steps with other transactions, possibly also decomposed into steps,
is substantially more difficult. To reason about interleavings, in [2] we introduced the
notion of semantic histories which not only list the sequence of steps forming the his-
tory, but also convey information regarding the state of the database before and after
execution of each step in the history. We identified several properties which seman-
tic histories must satisfy to show that a particular decomposition correctly models the
original collection of transactions.

In this paper, we take a closer look at the notion of successor sets which was formu-
lated in [2] to describe efficiently the correct interleavings of steps. We give a graph-
based characterization of correctness of successor set histories. We then give a two-
phase locking implementation for the verified decomposition that takes full advantage
of conflict serializability at the level of steps.

The remainder of the paper is organized as follows. A motivating example is pre-
sented in Section 2. Section 3 gives our model and illustrates it with refinements to the
motivating example. Successor sets, which are crucial to an efficient implementation of
our decomposition, are presented in Section 7. A graph-based characterization of cor-
rectness is given in Section 8, followed by an implementation in a two-phase locking
environment in Section 9. Section 10 discusses how the problems related to starvation,
deadlocks, and recovery could be addressed. Section 11 relates our work to the litei'a-
ture. Section 12 concludes the paper.

2 T h e H o t e l D a t a b a s e

We use a running example of a hotel database to explain our ideas. The hotel database
has a set of rooms. The status of each room is either Available or Unavailable. The
object ST stores the status information of each room. The objects res and total denote
the number of reservations and the total number of rooms in the hotel respectively.
The object RM stores information that relates the guests to the assigned rooms. In this
example, we do not allow guests to register multiple times.

The hotel database has two integrity constraints: (1) The number of guests assigned
rooms equals the number of reservations. (2) The set of rooms that are unavailable is
exactly the set of rooms assigned to guests.

There are three types of transactions in the hotel database - Reserve, Cancel and
Report. The Reserve transaction checks to ensure that a room is available and the guest
does not have a reservation, then selects a room for assignment and changes its status
to Unavailable and assigns the room to the guest. The Cancel transaction checks if the
guest has a reservation, then decrements res, changes the status of the room assigned to
the guest to Available, and removes the guest to room assignment from RM. The Report
transaction prints ST and RM.

77

3 The Model

In our model, a database is specified as a set of objects, along with some invariants
or integrity constraints on these objects. At any given time, the state is determined by
the values of the objects in the database. A change in the value of a database object
changes the state. The invariants are predicates defined over the objects in the state. A
database state is said to be consistent if the set of values satisfies the given invariants. A
transaction is an operation that takes the database from one consistent state to another.

Let I denote the original invariants, and let S T denote the set consisting of all
consistent states; i.e., S T = {ST : ST satisfies 1}. A transaction Ti always operates
on a consistent ST E ST; the state after the execution of Ti is also in ST, However,
when Ti is broken up into steps < Til, Ti2,..., Tin >, each step Tij is executed as an
atomic operation. I f ST(i represents the partial execution of Ti, it is possible that after
execution of step T U, the resulting database state STti no longer satisfies the invariants
I and, therefore, lies outside ST. Once the invariants are violated, the formal basis for
assessing the correctness of subsequent behavior collapses.

In our approach, we define a new set of invariants, I, by relaxing the original in-
variants I. We decompose each transaction such that execution of any step results in a
database state that satisfies I. In addition, if all the steps of a transaction are executed
on an initial state that satisfies the original invariants, then the final state also satisfies

the original invariants. Let S'T = { ST : ST satisfies I}. ST and ff'T are related as fol-

lows: ST C ST . Formalizing S T allows us to investigate activities in inconsistent but
acceptable states.

4 Correctness Criteria for Semantic-based Decompositions

In this section, we briefly review the relevant notions related to semantics histories. We
refer the reader to [2] for additional details and their justification.

A decomposition of a transaction Ti is a sequence of two or more atomic steps
< Til, Ti~,..., Tin >. In place of Ti, these steps are executed in the given order as atomic
operations on a database state. We make a distinction between a type of a step and an
instance of a step. Histories, defined subsequently, reflect actual transactions, and must
reference instances of steps. In general, a history may contain many instances of a step
of a given type. We use the notation Tij to denote an instance of a step.

Definition 1. [Stepwise Serial History] A stepwise serial history H over a set of trans-
actions T = {7"1, 7"2 Tin} is a sequence of steps such that

1. for each Ti E T, a step of Ti either appears exactly once in H or does not appear at
all,

2. for any two steps TO., Ti~ of some Ti E T, Tij precedes Tik in H if T 0. precedes Tik in
Ti, and

3. if Tij E H, then Tik E H for l < k < j.

By Condition (1), we ensure that every step of a transaction should occur at most
once in a stepwise serial history. Condition (2) ensures that the order of the steps in

78

a transaction is preserved in the stepwise serial history. Condition (3) ensures that for
every step in a stepwise serial history, all the preceding steps in the corresponding trans-
action are present in the history.

Definition 2. [Complete Execution] An execution of a transaction Ti = < T i l , Ti2

Tin > in a history H is a complete execution if all n steps of Ti appear in H.

To emphasize the fact that we view the database from a semantic perspective, we
define the term semantic history.

Definition 3. [Semantic History] A semantic history H is a stepwise serial history that
is bound to (1) an initial state, and (2) the states resulting from the execution of each
step in H. A semantic history tip over T is a partial semantic history if the execution of
some transaction Ti is not complete in lip. A semantic history H over T is a complete
semantic history if the execution of each Ti in T is complete.

Definition 4. [Correct Part ial Semantic History] A partial semantic history Hp is a
correct partial semantic history if

1. the initial state is in ST,
2. all states before and after the execution of each step in Hp are in ST , and
3. preconditions for each step are satisfied before it is executed.

Definition 5. [Correct Complete Semantic History] A complete semantic history H
is a correct complete semantic history if

1. H is a correct partial semantic history, and
2. the final state is in ST.

In a correct semantic history the steps of transactions are executed serially. To im-
prove the throughput, steps must be executed concurrently. Later, in Section 8, we
present our notion of correct concurrent executions.

5 Properties of a Valid Decomposit ion

With the notion of correctness in place, we can state the property relating steps in a
decomposition to the original transaction. We call this requirement the composition
property. Formally:

Composition Property: Let Ti denote the original transaction and Tn, Ti2 Ti,
denote the corresponding steps. Executing the steps Tn, 7",'2,..., Tin serially on a state
satisfying the original invariants I, changes the original database objects in the same
way as executing the original transaction Ti on the same state.

Similar to the consistency property for traditional databases, we place the following
requirement on semantic histories:

Consistent Execution Property: If we execute a complete semantic history H on an
initial state (i.e., the state prior to the execution of any step in H) that satisfies the

79

original invariants I, then the final state (i.e., the state after the execution of the last step
in H) also satisfies the original invariants I.

In our model, we allow steps or transactions to see database states that do not sat-

isfy the original invariants (i.e., states in S T - ST). But we may wish to keep some
transactions from viewing any inconsistency with respect to the original invariants. For
example, some transactions may output data to users; these transactions are referred
to as sensitive transactions in [6]. We require sensitive transactions to appear to have
generated outputs from a consistent state.

Sensitive Transaction Isolation Property: All output data produced by a sensitive
transaction Ti should have the appearance that it is based on a consistent state in ST,

even though Ti may be running on a database state in S T - ST.

The fourth property which we describe is the complete execution property. When
transactions have been broken up into steps, the interleaving of steps may lead to dead-
lock (i.e., a state from which we cannot complete some partially executed transaction).
The complete execution property ensures that deadlock is avoided; if a transaction has
been partially executed, then it can eventually complete.

Complete Execution Property: Every partial correct semantic history lip is a prefix of
some complete correct semantic history.

6 A Valid Decomposition

In [2], we provide a valid decomposition of the hotel database. It satisfies all the prop-
erties identified in the previous section.

To make the invariants more general, we add the auxiliary variable tempreserved,
which is a natural number, to denote the reservations that have been partially pro-
cessed. We also add the auxiliary variable tempassigned, which is a set of rooms, to
denote the rooms that have been reserved but which have not yet been assigned to
guests. The generalized invariants are as follows: (1) The number of reservations (res)
equals the number of guests assigned rooms plus the number of reservations in progress
(tempreserved). (2) The set of rooms with status Unavailable equals the set of rooms
assigned to the guests union the set of rooms in tempassigned.

We decompose the reserve transaction into steps R1, R2 and R3. R1 checks if res is
less than total, and then increments res and tempreserved. R2 selects an Available room
and changes its status to Unavailable and includes this room in the set tempassigned.
R3 checks if the guest does not have an existing reservation, then it assigns the room
to the guest, decrements tempreserved, removes the room from the set tempassigned.
The single step of Cancel transaction, denoted by ValidCancet, is nearly identical to
the original transaction. Report is a sensitive transaction, and we establish the sensitive
transaction isolation property by construction. Report transaction outputs values of ST
and RM. ST and RM involve the following original invariant: The set of rooms with
status Unavailable equals th e set of rooms assigned to the guests. This original invariant
is satisfied when the auxiliary variable tempassigned is empty. To ensure consistent
output, we add the extra precondition, tempassigned is empty, in step ValidReport which
is the only step of Report transaction.

80

7 Successor Sets

Decomposing transactions into steps yields improved performance, but the interleaving
of these steps must be constrained so as to avoid inconsistencies. In the decomposition
we have given so far, the interleaving is constrained by additional preconditions on the
auxiliary variables. Although auxiliary variables facilitate analysis, it is expensive to
implement them. Also performing additional precondition checks involves extra run
time overhead. To avoid implementing auxiliary variables and performing additional
precondition checks we introduce the concept of successor sets.

Before formally introducing successor sets, let us consider one of the problems
associated with the interleaving of steps of different transactions in an implementation.
This will help us to establish the necessary background for our notion of successor
sets. Suppose a transaction Ti introduces an inconsistency in step T/j and removes the
inconsistency in some later step Tik. Another transaction, say Tpq, is not allowed to see
the inconsistency introduced by step 7'/./. Now, Zpq will see an inconsistency caused by
T/j only if Zpq tries to read or write a variable which has been modified by T,:/. In other
words, Trq must conflict with 7"/./. In such a c a s e Tpq should not be allowed to execute
after step T U, Ti(j+l) Ti(k_l) as shown below.

Tpq can execute Tpq can execute

Ta "r,2 . . . TiU-1)TO T~U+~) riv+21 . . . T,(k-~)T~k ri(k+l) . Tin;

Tpq cannot execute

Note that this goal can be achieved if we implement the steps obtained using the
decomposition based on generalized invariants. In the generalized invariant scheme,
preconditions are used to control the interleaving of steps of different transactions, and
in any history, resulting from the implementation of the generalized invariant scheme,
the preconditions involving auxiliary variables is false if Tpq appears between steps Tij
and Tik. In other words, preconditions involving auxiliary variable are false if we try to
execute Tpq after Tit, where Tpq conflicts with Tit or any step previous to Tit. However,
as mentioned earlier, such a scheme will be undesirably costly.

We now formally introduce our notion of successor sets.

Definition 6. [Successor Set] The successor set of ty(T/j), denoted SS(ty(To.)), is a set
of types of steps.

Note that, at this point, the notion of successor sets is purely syntactic. Subsequently,
we define the constraints under which a successor set description is correct with respect
to a particular decomposition. But first we define correct successor set histories.

Definition 7. [Correct Successor Set History] Let H be a correct semantic history. H
is a correct successor set history if it satisfies the following additional requirement: If
7"/is incomplete in the prefix of H that ends at Tpq, and T,j is the last step in Ti such that
(1) Tij conflicts with Tpq and (2) Tij precedes Tvq in H, then ty(Tpq) 6 SS(ty(Tu)).

The above successor set rule enforces the requirement that in any correct successor
set history, the step Tl, q must be in the successor set of step T 0. where T/j is the last step
of Ti which conflicts with and precedes step Tpq.

81

Example 1. Successor set descriptions are obtained by examining the preconditions
with auxiliary variables. In the hotel example, the only precondition with auxiliary
variable involves checking whether tempassigned is empty in step ValidReport. This
precondition is satisfied as long as a step of type ValidReport does not appear between
a step of type R2 and a step of type R3 of reserve transaction. The successor sets of R1
and R2 are given below,

SS(R1) = {R1, R2, R3, ValMCancel, ValidReport}
SS(R2) = {R1, R2, R3, ValidCancel}

The successor set for R1 includes every other possible type of step; it is possible
to execute a step of type R1, and then execute a step of any other type R1, R2, R3,
ValidCancel, ValidReport. The successor set for R2 is more restrictive. ValidReport ~[
SS(R2) means that any step of type ValidReport cannot execute after step of type R2
if a step of type ValidReport conflicts with a step of type R2 or R1. In other words,
ValidReport is not allowed to the see the inconsistencies with respect to the original
invariants that are introduced by a step of type R2. Also note that after the last step of a
transaction has been executed, it will be possible to execute any step of any transaction;
thus the successor set of R3, ValidReport, ValidCancel contain all types of steps.

With respect to the specifications given with auxiliary variables, not all successor set
descriptions are correct. We describe correct successor set descriptions with the valid
successor set property:

Definition 8. [Valid Successor Set Property] A specification $2 that uses successor
set description is valid with respect to specification $1 with generalized invariants if

1. Any correct semantic history generated by $2 is also a correct semantic history
generated by $1.

2. $2 satisfies the complete execution property.

If the sets of correct semantic histories generated by $1 and $2 are identical, then
it follows that $2 enjoys the complete execution property if and only if $1 does. In
the case where $2 generates fewer correct semantic histories than $I - a byproduct
of the successor set descriptions of $2 being less expressive than the first order logic
preconditions of $1 - the complete execution property needs to be explicitly reverified
with respect to $2.

Before concluding this section, we give one more definition. Consider the following
scenario. Suppose that in a partial correct semantic history step Tg of transaction Ti has
been executed, and suppose we wish to execute step Tpq, where Tpq conflicts with T U or
some step previous to T~/. The next function, defined below, gives the earliest step in Ti
after Ti/where Tpq is allowed to execute such that the resulting history remains correct.
(The next function is exactly the F function in [5].)

Definition 9. [Next Function] The next function, denoted by NF(T~i, Tpq), gives the
first step Ti~ of Ti in the sequence T,~, Ti(j+l) Ti(j§ such that ty(Tpq) E SS(ty(Tik)).

Stated more formally, Ti~ = NF(T~i, Tpq) if the following conditions hold: (i) ty(Tpq) E
SS(ty(Ti~)), k > j and (ii) for each step Tit appearing between T 0. and Tik in Ti (if any),
ty(r,,q) r ss(ty(r)).

82

Suppose a step Tk/conflicts with a step T/J and suppose ty(Tn) ~ SS(ty(To)). Let
NF(T/J, Tkt) = Tip. Tld is not allowed to execute after the steps T/j, Ti(i+l), 7"/(/+2)
Ti(p-1), but Tkt is allowed to execute after Tip. It must be the case that Tip alters the
database state in such a way that Tkt can execute. Thus Tk~ and T/j must conflict. We
capture this property as an explicit constraint in our model.

Constraint 10. If Tkl conflicts with Tij or some step in Ti previous to T 0 and ty(Tta) q[
SS(ty(Tij)), then Tkl also conflicts with NF(T/J, T~a).

8 Correct Concurrent Executions

In a correct successor set history all operations of one step must appear before any op-
eration of any other step. However, if steps execute atomically and without interleaving
the system makes poor use of system resources. The standard solution, which we adopt,
is to increase the class of allowable histories to include the histories that are conflict
equivalent to correct successor set histories. We call these histories correct stepwise
serializable histories.

We show how to decide whether a history is a correct stepwise serializable history
by analyzing a graph, called a precedence graph, derived from that history.

Definition 11. [Precedence Graph] Let H be a history defined over a set of transac-
tions T = {T1, T2, . . . , Tm}. The precedence graph of H, denoted by PG(H), is a directed
graph where the nodes are the steps of the transactions in T and the edges graph are of
three types constructed as follows:

1. Internal Edges - For each pair of consecutive steps T/j and Ti(j+I) of transaction Ti,
there is an internal or I edge (Tij,Ti(j+l)).

2. Conflict Edges - For each pair of conflicting steps T o and Tkt belonging to different
transactions Ti and Tk, there is a conflict or C edge (Tij,Tn) if there is an operation
in T/J that conflicts with and precedes another operation in Tn.

3. Successor Edges - For each pair of steps T 0. and Tu, belonging to different transac-
tions Ti and Tk respectively, such that there is a conflict edge from T U to Tkl, there
is a successor edge (NF(Tij, Tkt),Tkt).

Observation 12. For a correct successor set history H, if there is an edge (T/j, Tld) in
PG(H) then Tij precedes Tkl. It follows that for a correct successor set history H, the
precedence graph PG(H) is acyclic.

Theorem 13. A history H is a correct stepwise serializable history iff PG(H) is acyclic.

Proof. r Since PG(H) is acyclic it can be topologically sorted. Let Hc be any topolog-
ical sort of PG(H). We prove Hc is a correct successor set history by contradiction. Sup-
pose Hc is not a correct successor set history. There must be some step Trq which inter-
leaves with transaction Ti such that Tij is the last step in Ti conflicting with and preced-
ing Tpq, and ty(Tpq) ~ SS(ty(Tij)). Let NF(To, Tpq) = Tik. Since ty(Tpq) ~[SS(ty(Tij)),
Tik is some step after T/j. In PG(H) there must be a successor edge (Tik, Tpq) corre-
sponding to the conflict edge (Tu,Tpq). By Constraint I0 Tpq and Tic conflict. As T O

83

is the last operation which conflicts and precedes Tpq, Tpq must precede Ti~, and the
edge (Tpq, Tik) is in H. As figure 1 shows, the result is a cycle in PG(H) - a contradic-
tion. The assumption that Hc is not a correct successor set history is wrong. Since H is
equivalent to Hc, H is also a correct stepwise serializable history.

Ti j Internal Edge Ti n "l~m Internal Edge Tik

Fig. 1. Edges of Precedence Graph involving Z/j,Tik,Zpq

=r Since H is a correct stepwise serializable history, it must be equivalent to some
correct semantic history H'. Let PG(H') be the precedence graph of the history H'.
Since H and H' are equivalent, the internal edges and the conflict edges in PG(H')
are the same as the corresponding edges in PG(H). Successor edge (NF(T/J,Tla),T~) is
added if there is a conflict edge (T/j, T~/) where i r k. Since the set of internal edges
and conflict edges are the same for PG(H) and PG(H') and the successor sets are the
same for H and H', the set of successor edges is the same for PG(H) and PG(H'). Thus
PG(H) = PG(H'). Since PG(H') is acyclic (Observation 12), the result follows.

9 Concurrency Control Mechanism

We now propose a mechanism based on a two-phase locking environment. First, we
describe some notation. A step is a sequence of read and write operations followed by
a commit operation: T/j = O/j(xl), O/j(x2),..., O/j(x,,), C/J, where Oij(x) is either R/j(x)
or W/j(x). A transaction is a sequence of steps followed by a termination operation:
Zi = < Til,Ti2,... ,Tin,TR(Ti) >.

9.1 Data Structures

In addition to the data structures required by the standard two phase locking protocol,
we require the following data structures: (i) Active-Set - Set of Active Transactions and
(ii) Int-Set - Interleaving Sets.

Active-Set(x) - The active set for x keeps the list of all active transactions that have
accessed x. Whenever any step T/J that reads or writes x commits, the transaction Ti
is added to Active-set(x). After the transaction Ti terminates, Ti is removed from the
Active-Set(x).

84

Int-Set(Ti,x) - The interleaving set for x is associated with each active transaction
Ti that accesses x. The interleaving set gives the types of the steps that can access the
data item. If data item x has been accessed by step T/j of Ti and T/j or any step occurring
after T~/commits, then Int-set(Ti,x) is replaced by the successor set of the corresponding
committed step.

9.2 Algorithms

The mechanism requires the following assumptions

1. Lock management is centralized.
2. The steps of a transaction are submitted in order; that is, an operation in step Tr(s+l)

is submitted only after step Trs commits.
3. If a transaction reads and writes the same data entity x, the read operation precedes

the write operation.

4. A transaction reads or writes an entity x at most once.
5. The algorithms specified below execute atomically.

Algorithm 14. Algorithm for Read

Procedure Process-read (Ru(x))
begin

if a step Tim is holding an exclusive lock on x
exit; /* Lock unavailable - T U can retry later */

for each Tk E Active-set(x)
if ty(T/j) ~ Int-set(Tk,X)

exit; /* Lock unavailable - T/j can retry later */
lock x in shared mode;
accept(Rij(x));

end

Algorithm 15. Algorithm for Write

Procedure Process-write (Wu(x))
begin

if a step Tim is holding any lock on x
exit; /* Lock unavailable - T U can retry later */

for each Tk E Active-set(x)
if ty(Tij) ~ Int-set(Tk,x)

exit; /* Lock unavailable - T~ can retry later */
lock x in exclusive mode
accept(Wu(x));

end

85

Algorithm 16. Algorithm for Step Commit

Procedure Process-stepcommit(C/j)
begin

for each x locked by the transaction in this or previous step do
Int-set(Ti,x) = SS(ty(T/j));

for each entity x locked by the transaction in this step do
begin

if Ti f[Active-set(x)
Active-set(x) = Active-set(x) UTi;

Release the lock on x which was acquired by T/j;
end

end

Algorithm 17. Algorithm for Transaction Terminate

Procedure Process-term i nate(TR (Ti))
begin

for each entity x which was accessed by Ti do
begin

Active-set(x) = Active-set(x) - Ti;
delete the structure Int-set(Ti,x) ;

end
end

In section 8 we imposed Constraint 10 on successor set descriptions. Constraint 10
requires step NF(Tij, Tpq) and step Tpq to conflict if Tpq and T/j conflict and ty(Tpq) q[
SS(ty(Tij)). It turns out that our particular mechanism does not require Constraint t0 on
successor set descriptions as it implements this constraint independent of whether the
successor set description enjoys the property.

Theorem 18. Any history generated by our mechanism is a correct stepwise serializ-
able history.

We omit the proof due to lack of space.

10 Other Issues

In this section, we discuss how problems related to starvation, deadlocks, and recovery
could be addressed.

10.1 Starvation

In our mechanism we do not specify how to grant locks if multiple steps are contending
for the same lock. If the scheme for granting lock requests is unfair, starvation may oc-
cur. The problem of starvation can be handled at the specification level or at the imple-
mentation level. To keep the specification simple, we recommend handling the problem

86

of starvation at the implementation level. The problem of starvation can be solved using
the standard techniques [4]. For example we can associate a FIFO queue with each data
item; steps are allowed to lock the item only in the order in which they have requested
a lock on the data item. Other mechanisms are possible in which priorities are assigned
to steps; locks are assigned on the basis of priorities. The priority of a step increases the
longer it waits and so eventually it will be possible for a particular step to acquire locks.

10.2 Deadlock

There are two reasons why a step T o may be blocked because of step Tu in our mecha-
nism, thus causing deadlock: (1) T U wants to lock an item which is already locked by Tkt
in a conflicting mode, or, (2) ty(T/j) • SS(ty(Tk(l_l))) and ty(To) E SS(ty(T~t)); hence
step T o cannot proceed until step Tu completes.

We provide a modified wait-for graphs to detect deadlocks in our mechanism. The
nodes in the MWFG correspond to active steps (a step is active from the time it tries to
acquire the first lock to the time it completes). The edges in graph are of two types: (i) L
edges (waiting for Lock edges) - the directed edge (T/j, Tkt) indicates that T/j cannot ex-
ecute because it is waiting for a lock held by Tn, and (ii) S edges (waiting for Successor
edges) - the directed edge (T/J, T~) indicates that T/j cannot execute until T~ completes
because ty(T/j) E SS(ty(T~t)) and ty(T/j) ~_ SS(ty(Tk(I_I))).

The following algorithm can be used to generate the Modified Wait-For Graph:

1. The following operations are performed when step Tpq becomes active.
(a) it checks the MWFG to see if there is a node corresponding to Tpq; if the node

is absent the wait-for graph is updated to include this node.
(b) Tpq checks in the wait-for list to see if an S edge has to be drawn from T/J to

Tpq; if yes, this edge is drawn in MWFG.
2. The following operations are performed when Tpq requests for a lock on data item

x and the lock request cannot be granted.
(a) If Tpq cannot get a lock on x because some Tkt has locked the data item in

conflicting mode draw the L edge (Tpq,Tkt) in MWFG.
(b) If Tpq cannot lock x because ty(Tpq) ~. Int-Set(Tr,x) (this is because step ty(Tpq) ~_

SS(ty(Trs)) where Trs is the last step of Tr to have completed execution) then
the S edge (Tpq,NF(Trs, Tpq)) must be drawn in the wait-for graph. However at
this point it may not be possible to draw this edge because the step NF(T~, Tpq)
may not be active and there may not be any node corresponding to this step.
For this reason we have a list, called the wait-for list, which stores the list of
edges that have to be drawn when the respective nodes are created.

3. The following operations are executed when Tpq terminates.
(a) The node corresponding to Tpq is deleted.
(b) All edges directed at node Tpu is deleted.

The MWFG must be periodically checked for the presence of cycles. A cycle in the
MWFG indicates the presence of a deadlock and one or more steps in the cycle must
be aborted; the steps to be aborted are known as the victims. The process of victim
selection needs to be investigated. Nodes in the MWFG corresponding to steps that are

87

currently being executed are chosen as victims. The aborted victims must be re-executed
later on.

10.3 Recovery

In this paper, we assume that once transactions are initiated they can be successfully
completed. However, this may not always be true. For example, while the transaction
is being executed, the system may crash. A complicating factor is that when a system
crash occurs the transaction may have committed some but not all of its steps. In such a
scenario, executing the traditional undo and redo.[3] on the steps often does not restore
the database to a consistent state.

To solve this problem we propose using an additional data structure which stores the
state of active transactions. We term this data structure as the table of active transactions.
This table contains an entry for each active transaction. When a transaction commits
a step, it updates the corresponding entry to indicate the last committed step of the
transaction. Once the transaction terminates, the entry corresponding to this transaction
is deleted. This data structure must be stored in the stable storage so that its contents
can survive system crashes. Once the system comes up after a system crash, this table
is consulted to find out the transactions that were active at the time of the crash. These
transactions can then be completed and the database restored to a consistent state.

11 Related Work

The work on semantic based concurrency control can be classified into two major cat-
egories. In the first category [9, 10, 12, 13] the authors exploit the semantics of opera-
tions to increase concurrency. Instead of using low level database operations like read or
write to access the database objects, the authors propose the use of high level operations
for this purpose. Commutativity of these operations, and not the read/write operations,
is used to determine conflicts between transactions, resulting in more concurrency. In
these works, the authors use serializability as the correctness criterion.

Our work falls in the second category [1, 5, 6, 7] which is based on exploiting
semantics of transactions to increase concurrency. In these works, the researchers de-
composed transactions into steps and developed semantic based correctness criteria.
Researchers have variously introduced the notions of transaction steps, countersteps,
allowed vs. prohibited interleavings of steps, and implementations in locking envi-
ronments. The focus is typically on implementing a decomposition supplied by the
database application developer, with relatively little attention to what constitutes a de-
sirable decomposition and how the developer should obtain such a decomposition. We
find the decomposition process itself to be worthy of attention, so we give the devel-
oper a model in which to decompose transactions, and we define properties to assure
the developer as to the soundness of a given decomposition. Only then do we consider
the problem of implementing our decomposition in a two-phase locking environment.

88

12 Conclusion

In some applications transactions that ideally should be treated as atomic - for reasons
of analysis - must instead be treated as a composition of steps - for reasons of perfor-
mance. In a previous paper [2] we show how to decompose transactions into atomic
steps and assess the correctness of the decomposition. In this paper we have provided
a two-phase locking mechanism in section 9 that ensures execution histories that are
stepwise conflict-serializable and also respect the successor set constraints. We still
must address the problem of reliably transmitting parameters between steps of a trans-
action, a problem that is considered in [8, 11]. However, the semantic aspects o f our
implementation have been thoroughly addressed.

References

1. D. Agrawal, A. E1Abbadi, and A. K. Singh. Consistency and orderability: Semantics-based
correctness criteria for databases. ACM Transactions on Database Systems, 18(3):460---486,
September 1993.

2. P. Ammann, S. Jajodia, and I. Ray. Using formal methods to reason about semantics-based
decomposition of transactions. In Proceedings of the International Conference on Very
Large Data Bases, pages 218-227, Zurich, Switzerland, September 1995.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

4. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,
Redwood City, CA, 1989.

5. A. A. Farrag and M. T. ()zsu. Using semantic knowledge of transactions to increase concur-
rency. ACM Transactions on Database Systems, 14(4):503-525, December 1989.

6. H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
database. A CM Transactions on Database Systems, 8(2): 186-213, June 1983.

7. H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD International
Conference on Management of Data, pages 249-259, San Francisco, CA, 1987.

8. H. Garcia-Molina and K. Salem. Services for a workflow management system. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering, 17(1):40-44, March
1994.

9. M. Herlihy. Extending multiversion time-stamping protocols to exploit type information.
IEEE Transactions on Computers, 36(4):443--448, April 1987.

10. M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types. Journal
of Computer and System Sciences, 43(1):25-61, August 1991.

11. H. Wachter and A. Reuter. The ConTract model. In Ahmed K. Elmagarmid, editor,
Database Transaction Models for Advanced Applications, pages 219-263. Morgan Kauff-
man, San Mateo, CA, 1992.

12. W. E. Weihl. Specification and Implementation of Atomic Data Types. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1984.

13. W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE Trans-
actions on Computers, 37(12): 1488-1505, December 1988.

