Abstract
In this paper we develop a new exponential algorithm for model-checking infinite sequential processes, including context-free processes, pushdown processes, and regular graphs, that decides the full modal mu-calculus. Whereas the actual model checking algorithm results from considering conditional semantics together with backtracking caused by alternation, the corresponding correctness proof requires a stronger framework, which uses dynamic environments modelled by finite-state automata.
This work was supported during my stay at IRISA by the European Community under HCM grant ERBCHBGCT 920017, and during my stay at the LFCS by the DAAD under grant D/95/14834 of the NATO science committee.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
O. Burkart and J. Esparza. More Infinite Results. In INFINITY '96, volume 6 of ENTCS, 23 pages. Elsevier Science B.V., 1997.
O. Burkart and Y.-M. Quemener. Model-Checking of Infinite Graphs Defined by Graph Grammars. In INFINITY '96, volume 6 of ENTCS, 15 pages. Elsevier Science B.V., 1997.
J.C. Bradfield. The Modal mu-Calculus Alternation Hierarchy is Strict. In CONCUR '96, LNCS 1119, pages 233–246. Springer, 1996.
O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In CONCUR '92, LNCS 630, pages 123–137. Springer, 1992.
O. Burkart and B. Steffen. Composition, Decomposition and Model-Checking of Pushdown Processes. Nordic Journal of Computing, 2:89–125, 1995.
O. Burkart and B. Steffen. Model Checking the Full-Modal Mu-Calculus for Infinite Sequential Processes. Technical Report LFCS-97-355, University of Edinburgh, April 1997.
D. Caucal. On Infinite Transition Graphs Having a Decidable Monadic Theory. In ICALP '96, LNCS 1099, pages 194–205. Springer, 1996.
R. Cleaveland, M. Klein, and B. Steffen. Faster Model Checking for the Modal Mu-Calculus. In CAV '92, LNCS 663, pages 410–422, 1992.
B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 5, pages 193–242. Elsevier Science Publisher B.V., 1990.
H. Hungar and B. Steffen. Local Model-Checking for Context-Free Processes. Nordic Journal of Computing, 1(3):364–385, 1994.
D. Kozen. Results on the Propositional μ-Calculus. Theoretical Computer Science, 27:333–354, 1983.
D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An Improved Algorithm for the Evaluation of Fixpoint Expressions. In CAV '94, LNCS 818, pages 338–350. Springer, 1994.
D.E. Muller and P.E. Schupp. The Theory of Ends, Pushdown Automata, and Second-Order Logic. Theoretical Computer Science, 37:51–75, 1985.
R.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees. Transactions of the AMS, 141:1–35, 1969.
I. Walukiewicz. Pushdown Processes: Games and Model-Checking. In CAV '96, LNCS 1102. Springer, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burkart, O., Steffen, B. (1997). Model checking the full modal mu-calculus for infinite sequential processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63165-8_198
Download citation
DOI: https://doi.org/10.1007/3-540-63165-8_198
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63165-1
Online ISBN: 978-3-540-69194-5
eBook Packages: Springer Book Archive