
Towards a M e c h a n i z a t i o n of C r y p t o g r a p h i c
P r o t o c o l Verif icat ion

Dominique Bolignano

Dyade, B.P.105 78153 Le Chesnay Cedex France, Dominique.Bolignano@dyade.fr

Abstract . We revisit the approach defined in [2] for the formal verifi-
cation of cryptographic protocols so as to allow for some mechanization
in the verification process. In the original approach verification uses the-
orem proving. Here we show that for a wide range of practical situations
and properties it is possible to perform the verification on a finite and
safe abstract model.

1 I n t r o d u c t i o n

Formal verification of cryptographic protocols has recently received increased
consideration due to the importance of cryptographic protocols in the design
of new security or electronic commerce architectures. Many proof-based verifi-
cation techniques have been proposed (see [2] for a discussion of this issue) to
perform systematic analysis of large protocols. Model-checking based techniques
have recently been applied [11, 7] to the verification of such protocols. Verifi-
cation is performed on a finite model that corresponds to an abstraction of the
initial specification. The verification is thus automatic. But the proof that such
abstractions are safe and do not compromise the generality and accuracy of the
verification process has not yet been formalized in the case of cryptographic
protocols. In the case of electronic commerce protocols, for which the coher-
ence of data (e.g. price, order or payment information, etc.) is critical, finding a

- safe abstraction is a particularly crucial issue. In this paper we propose a safe
abstraction that can be incorporated into the framework proposed in [2] and
further extended in [3]. Similar abstractions based on abstract interpretation
techniques have been developed for the verification of temporal properties ex-
pressed using various branching-time temporal logics (e.g. [6, 4, 10, 5, 8, 9, 12]).
Here we transpose some of the results of [4, 9, 12] to the verification of security
properties. We also automate the construction of the abstract model and the
translation of security properties into abstract ones for a large class of practical
situations. As opposed to other uses of abstraction which typically guarantee
the preservation of a whole logic or of a whole class of properties, here a spe-
cific abstraction function is selected for each given property and is thus only to
guarantee the property at hand. The requirements are consequently much less
demanding and the model reduct ion can be much more important. The pro-
posed approach is currently being applied for the verification of large electronic
commerce protocols.

132

2 Bas ics

Encryption is the transformation of data into a form unreadable by anyone with-
out a secret decryption key. Decryption is the inverse function, which recreates
the original data in its form prior to encryption. A cryptographic key system is
said to be symmetric if, and only if, the same key can be used for both encryp-
tion and decryption. A cryptographic key system is said to be asymmetric when
different keys are used for encryption and decryption. In this latter case, one of
the key is only known by a particular principal and is known as the private key
of this principal, whereas the other one is not confidential and is known as the
public key of this principal. For illustration purposes we use a very simple two
message key distribution protocol:

](1) A -+ S : (A,B)(2) S -+ A: (K~,B)K~I]

This protocol description can be read as follows: (1) A sends a message to S to tell
him that he is A and wants to get B's public key KB; no encryption is used; (2) S
replies to the request by sending A B's public key KB; this message is encrypted
with the S's private key Ks -1 which S is the only one to know and which thus
authenticates the producer (this kind of encryption is thus called a signature).
Following the approach of [2] we first have to identify the different principals
involved. Principals receive messages at one end and emit other messages at
another end. Some principals will be considered to be "trustable" (i.e. to work
according to their role in the protocol) and some not. Communications media
are typically considered to be non-trustable, because messages can usually be
intercepted, replayed, removed, or created by intruders. We will consider that
this is the case in the following discussion. The set of untrustable principals is
modelled as a single (black box) agent which is called the "external world" or,
more concisely, the intruder. The intruder is modelled as a principal that may
know some data initially and that will store and try to decrypt all data passed
to him and thus in particular all information circulating on the communications
media. The intruder will also be able to encrypt data to create_ new messages that
will be sent to mislead other principals. But the intruder will be able to decrypt
and encrypt data only with keys he knows. This modeling will in particular allow
us to determine at any time which data are potentially known to the intruder
under the chosen "trustability" hypothesis. The same protocol can be studied
in terms of many different hypotheses. According to [2], the knowledge of the
intruder is formalized as a set of data components. Data components range over
domain C and sets of data components over domain S. Data components can
be:

- basic data, which may be (1) cryptographic keys which take their values in
domain K A (for asymmetric keys) or K S (for symmetric ones), (2) other
basic data which will take their values in domain D;

- data obtained by composition (1) using the pair operator which takes some
data cl and some c2 and returns the pair (cl, c~), (2) or by encryption of
some data c using key k which is noted ck.

133

Messages that are exchanged over communication media are of type C. The
domains S and C are formalized as:

C = C K I (C , C) [N

IC = K A I I < S I I < - * :ig~,~ (2)

/ig~re (1)

C is in fact defined modulo (i.e. quotiented by) the two axioms Vk .k E K S

k -1 = k, and Vk .k E K A ~ (k - l) - z = k. Similarly U is an ACUI operator with
neutral ~ (i.e. associative, commutative, unitary and idempotent). It is used to
describe "flat" sets. The pair operator is used to represent reversible constructors
such as the sequence, set, or aggregate constructors. The fact that a given data
component c can be derived from the intruder knowledge s is formalized and
axiomatized in [2] and is noted: c k n o w n _ i n s. In the sequel, we will adopt the
following conventions: variables s, # , s ' , ..., s l , s2, ... take their values in S by
default; variables k, k', k ' , ..., kl, k2, ... take their values in K.

3 F o r m a l i z i n g t h e P r o t o c o l

We then need to formally specify the protocol itself. This specification consists
in the description of the role of each trustable agent. The formal specification
of the protocol consists of a set of atomic actions. The sending and reception of
a message are not synchronous. Consequently the transmission of a message is
considered as two atomic actions, one for sending and one for receiving. More
precisely, the formalization is based on the chemical reaction paradigm [1]: a
system is described as a set of atomic actions which may be applied repeatedly,
in any order and whenever their pre-condition holds. Our modeling of the key
distribution protocol will thus distinguish 4 different kinds of atomic actions.
These actions will be identified using the labels drawn from A = {1A, lS, 2S, 2A).
Each of the 4 labels n z of A stands for one action: principal X sends or receives
message n. The system is defined as a pair (so, r) where so is the initial global
state, and r is a relation binding the global state before applying an action to the
global state after applying the action. The relation r is defined using a predicate
or logic formula p, defined on (S x (A x C) x S) where the domain for global
states S is defined as the Cartesian product, SA x S s x Sz , of local state domains,
i.e. SA and S s for the two trustable principals, A and S, and $I for the intruder.
By definition p(s, (l, m), s') is true if and only if the global state s is modified
into s ~ upon firing the action labelled l for sending or receiving of message m.
The set Si is the domain S of data components defined in the previous section.
Intuitively the state of the intruder is the set of data components that have been
listened to on the communication line and that the intruder may use to build
new messages. The state of a trustable principal is defined as an aggregate or
a tuple describing the value of each local state variable. We will use tuples to
simplify the presentation. The local state of the key server S is a triple containing
a key directory mapping principal identifiers to public keys, the value of the last
principal for which the public key was requested when relevant and the value of
the program counter. The third state variable is useful in the case where control

134

constraints have to be specified. The local-state of A is a pair containing the
directory of known keys and the local program counter. The directory held by
A is empty initially and is updated each time a new association is received from
S. The directory held by S is never changed. For more conciseness in the sequel,
we drop the program counter information from the local state of A and from
the local state of S. The formula p is thus expressed as the disjunction of 4
sub-formulae, i.e. one for each action:

p ((d~ , (d~, ~) , s~), (l, .~) , (d Z (d~, ~'), ~)) =
(l = 1A A r n = (A, id) A s'~ = ss O m A dA = d~A A d s = d~)V
(z = i s A m = (_, ~') A m k n o w ~ _ / n s~ ^ s~ = s t A d ~ = d~ ^ d~ = d ~) v

' = s z U r n A (x , k) E d s A d A ' A d s = d ~ s) v (l = 2 s A m = (k , x)r,.-~l A s r = d a

(l = 2A A m = (k, id)K- ~, A m known_in sz A s'z = sr A dA = d'A U (id, k) A d s = d~s)

The first action (i.e. 1A) describes A sending a pair composed of the identifi-
cation of A and of the identification of the principal id for which the public key is
requested. Each sending of a message m increases the knowledge of the intruder,
i.e. s) = sl U m . The value of id is not constrained in any way. This allows
A to request any public key he wishes. The second action (i.e. l s) describes S
receiving a pair of data. This pair can be the pair just sent by A or any pair of
data known by the intruder. The second situation is only meaningful if this can
go undetected by A: here there is no particular checking other than on the form
of the message. The third action (i.e. 2s) describes S sending a pair composed
of the public key of d and of the identifier d stored previously 1. Receiving a mes-
sage m does not change the state of the intruder (i.e. s~ = sx), but the message
should be deducible from the knowledge of the intruder (i.e. m k n o w n _ i n s i) .
The fourth action (i.e. 2A) implicitly specifies that the received message is to be
signed using K~-I . 2

4 P r o v i n g s e c u r i t y p r o p e r t i e s

Most security properties are safety properties 3. They mainly rely on the fact
that the intruder does not know some private data or is not able to construct
the expected message. This is in both cases formalized as an invariant prop-
erty, ",(c k n o w n _ i n s I) , where c stands for the private data in the first case
and is the message to construct in the second, and where s1 is the da ta col-
lected by the intruder. Confidentiality properties which are the simplest secu-
rity properties, correspond to the situation where c is either a key or a basic

1 As we have decided to represent data constructors such as the sequence, set, or
aggregate constructors using the pair operators, sets and set operators are supposed
to be coded in a Lisp-like manner.

2 Because we have chosen not to store the value of the chosen id in local state of A,
there is no possibility here for A to check that the key he receives is the key he
requested.

a The only liveness property is denial of service, which current cryptographic protocols
do not guarantee.

135

data (e.g. a nonce, a credit card number, etc.). As an example, K s 1 should
remain unknown to the intruder. This is written - , (Ks I known_in sl). But
some security properties cannot be written so as to fit into the general form
above. As an illustration we will use in the sequel two representative invariant
properties drawn from [2]. The first one will be referred to as invariant (1):
V k, x. (k, x) E dA ~ (k, x) E ds, i.e. the directory of A should always be co-
herent with the master directory held by S. The second one will be referred to
as invariant (2): Vk, x.(k, X)gs~ known_in sr ~ (z, k) E ds i.e. any da ta of the

form (k, Z)Ksl that the intruder can replay or produce corresponds to a valid

identifier-key association.

5 U s i n g a f i n i t e s t a t e m a c h i n e

One of the keys to mechanization is to transform a system model into a model
that only uses a finite number of keys and basic data values: these keys and basic
data are defined as part of a finite subset B0 of B. The corresponding subsets
of C and S will be noted Co and So. The transformation is defined using a
function h : B -+ B0 which will intuitively associate each element of B to one of
its representative in Bo. We then define the homomorphic extension h : S --+ So
of h (i.e. h((Cl, c2)) = (]/(c1) ,/~/(c2)), h(ck) : h(e)h(k), etc.).

Given a model M = (so,r), let us consider a finite abstract model Ma
(/1 ,~1) ('rk ,mk)

such that for any finite run So sl... sk of M then]~(so) (ll,f,(-~l))

h(sl).. . (zk,s]~(sk) is a run of Ma: in other words, Ma = (]~(so),ra), with
ra such that (s, (l, m), s') E r =~ (]~(s), (1,]~(rn)), h(s')) Era . Let us note 7~(M)
(resp. 7r the set of reachable states of a transition system M (resp. Ma).
By construction h(Ti(M)) _C ri(h(Ma)) .

Thus in order to prove that an invariant property inv holds on M =
(so,r) it is sufficient, (a) to provide ra such that (s, (l, m), s') E r ==>
(h(s), (l, h(m)),]~(s')) E ra, (b) to provide an invariant property inva on
Ma = (~(s0), r~) such that Vs.inva(h(s)) =ez inv(s), and (c) to check inv~ on
Ma = (h(so), ra). This can be seen as a direct reformulation in our framework of
results presented in [9, 12] 4 and based on ideas and theoretical results presented
in [4]. The steps (a) and (b) generate proof obligations that should be discharged
using formal provers, whereas step (c) can be performed using model checking
techniques. This was already the case in [9]. The benefit of this approach comes
from the fact that both kinds of proof obligations are much simpler to perform
than the proof of invariant inv for the initial concrete model M.

But in order to perform step (c) we need to be able to perform the checking of
inva automatically on each reachable state of Ma. The problem here comes from
the fact that even when a limited number of keys and of basic data components
is used, the computations that the intruder may perform (or the da ta that he
can generate) are unbounded: e.g. starting from k the intruder can generate kk,

4 In [9, 12] this was proved for the AG operator of CTL.

136

k~,, etc. In this section we thus provide a decision procedure for the known_in
predicate in the case where the parameters of known_in are explicit (described
by extension using a variable free expression). The five basic operations that an
intruder may use in order to exploit da ta were defined in [2] and referred to as 7,
7/, n', rd and ~ operations: 3' for the encryption of a known data component using
a known key, 7 t for the decryption of a known data component using a known
key, ~" for the pairing of two known data components, ~r ~ for the decomposition
of a pair (i.e. obtaining the first or second projection); and ~ for data extraction.
Each action was formalized as a state transformation relation:

s = ~ s' d~i = { (s , s ') l (3 e , k . k u c c_ s A s' = s u (e)~,}
I

s = ~ s' ~~= {(s, s') l(3c, k . k -~ U (c)k C_ s/X s' = s U c}

s : : ~ s / ,~I= {(s, s ') l (3e , , c~ . e, We2 C_ s A s' = s U (e,, ~2))}
rr' de/

s ~ s ' = { (s , s ') l (3c l , e ~. (Cl,C~.) C s A s ' = s U c l Uc.~)}

s ~ s' dE {(s, s')ls' c_ s}

~e] s" where C is defined on S • S as: s j C s = 3 s ' . s ~ U = s. The exploitation of a
given knowledge (i.e. a given set of data components) to deduce new information
(i.e. new data) consists in the application of zero or more of the above operations
in any order and any number of times. A set of data components s ~ (or a single
data components) is thus said to be deducible from a set of data component
s if and only if there exists a sequence of applications of the five basic opera-
tions which allows us to obtain s ~ from s. Given any subset ~ E = {xt, .., z,,} of

{7,7 I, % rd,~}, E is defined as the reflexive-transitive closure of the relation

= ~ U...U =~z. The predicate k n o w n _ i n is defined as follows: e known_ in s if

and only if s {'~'~'-~'~"~} c: c known_ in s if and only if c is deducible from s. We
recall here some of the properties that were proved in [2] and that we will use in
the sequel.

L e m m a l . I r E C { 7 , 7 ' , r q ~ ' , ~ } then_Vs, s',s".(s --~ s') ~ (zUs '1 E> s 'Us ")

P r o p o s i t i o n 2 C o n f l u e n c e . Relat ion - - ~ is confluent for any given subset E

of {~, 7',~,~'): i.e. s ~ s~ a ,d s - -~ s~ then there exists s~ such that s~ -% s~

and s~ - - ~ s3. Fur thermore s3 = sl U s2 is always a solution.

P r o p o s i t i o n 3 . I f s (~'~i!~:~ ''~} s', then there exists s" such that s { w ' " ' ~ ' } s-

and s" {~}) s ~. More generally f o r any non-empty subset E of {7,7 ' , rr, lr'} i f

E Sj I S/r {~}) S/ s Eu{l} s ~, then there exists s" such that s) et

P r o p o s l t i o n 4 . I f s ~ s" and s" ~ s', with i E {7,7r} and j e {7',~r'} then

there exists s m such that s {J}~ s m and s " ~ s'.

s Only non empty subsets are useful in practice.

137

C o r o l l a r y 5 . If s {v'~"~;~'} J , then the-re exists s" such that s {~"~} d' and

s" s'.

We then define a first algorithm described using the chemical reaction
paradigm. The algorithm is supposed to stop whenever a fixed point is reached 6 .
The algorithm performs a decomposition of s into components obtained by ap-
plying only decomposition operations 7', zr', ~. The returned value, decornp(s),
is by definition the last value of st:

(init) s t :=s I
(Act l) If 3 k, c.(k C sl A ck-~ C_ sl) Do st:=sl tO c End
(Act2) If 3 c, c'.((c~ c') C_ sl) Do sl :=Sl U c U c' End

(Decomposition algorithm: decomp)

P r o p o s i t i o n 6 . For any s with an explicit value, the previous algorithm termi-
nates and the returned value st is the set of all data components c such that

s (~'!~'~} c.

Proof. The proof of termination is quite straightforward: each step consumes
one sub-tree of the abstract syntactic tree that corresponds to the value of s.
The fact that the returned value st is the set of all da ta components e such

that s c is proved in two steps. First we prove that any component c

of Sl is such that s �9 c, next we prove the converse. The first part is
straightforward, and the second is a direct application of propositions 3 and 2.

Let us now consider the following algorithm which uses the previous one:

(Init) si:=decomp(s); s' I :=s ' -- sl
' . - ' k) - s l (Act1) If 3 c, k.ck C s tDo s 1 . - (s 1 U c U - ck End

" - ' - (c ,d) End (Act2) ' If 3 c, c ' (c, c') c_ st Do s t . - (s t U c V c') - st
(Decision Algorithm)

Propos i fc ion 7. The previous algorithm is a decision procedure which takes two
explicitly defined parameters s and s' = {c} and returns an empty set s t when-
ever c known_in s and a non empty set otherwise.

Proof. The proof for the termination of the algorithm is similar to that of propo-
sition 6. The proof of correctness and the proof of completeness both use the same

invariant property: sl Ust {%~!)~} s'. Thus when s~ = 0 then s {~i'~ } sl {'r,,n~} s'
which proves the correctness. If the last value of s t is not O then we can
easily prove by contradiction using propositions 3, 2, 6 and corollary 5 that

s U s t {'r,~',r,f,~} s' but that s {'r,~',V,~r',e} s' is false: it is not possible to build s'
from s without using an element of s] (in fact all elements of s t are necessary).Z

6 The algorithm can be implemented by only firing actions which effectively change
the state, and by terminating when no more action can be fired.

z More detailled proofs can be found in the extended version of this paper.

138

6 C o m p u t i n g t h e a b s t r a c t m o d e l a n d t h e a b s t r a c t

p r o p e r t i e s

Now we improve on the approach proposed in the previous section by bringing
some automation for steps (a) and (b). In step (a), given a logical formula p (e.g.
p : (S • (,4 • C) • S) -+Bool defined in section 3 we are looking for an abstract
logical formula p~ such that Vz.p(z) ~ p~(h(z)) (i.e. we consider that h is the
identity function on labels of A). In step (b) given a logical formula p (e.g. p is
inv) we are looking for an abstract logical formula Pa (i.e. pa is inva) such that
Vx.p~(h(z)) ~ p(x). The main difference in both cases comes from the direction
of the implication (i.e. it goes from concrete to abstract in the first case and
from abstract to concrete in the second). The goal will be said to be negative in
the first case and positive in the second. In both cases, formulae are supposed
to be expressed in a Very simple (typed) logical language defined on C and S
using the operators and connectors of basic set theory, i.e. V, A, E, --, =:r together
with the predefined predicate known_in. For the sake of simplicity, quantifiers
are omit ted and free variables are considered to be universally quantified. The
homomorphic extension of �88 can now be defined on this new language. In the
sequel we will use the same notation]~ to refer to it because it generalizes the
previous extension]~s. We first consider the following preliminary result:

P r o p o s i t i o n S . Vc, s.c known_in s ~ h(c) known_in]~(s)

Proof. c known_in s means by definition that s {'Y'7~:-~r"~) c, and thus that
s ~ sl ~ ... ~ c where hi, a2, ..., ak are elements of {7,'Y', 7r, 7r', 4}. h(c)
has the same structure as c, and each component c' of s has its counterpart h(c')
in h(s). In order to prove the proposition we just need to associate each step

sl ~ si+l with the corresponding step]~(si) ~ h(si+l).

We now describe the main steps of an algorithm for checking that given a
formula p and a goal (i.e. positive or negative), we can use h(p) as an abstract

formula (i.e. p~ =-]z(p)). The algorithm is based on the ten rules of figure (3)
below and works as follows: we use the initial formulap and its associated sign as
an initial goal; at each step we try to match the current logical formula 9 and its
associated sign to the formula and sign part of a rule; if one of the rules (1) to (4)
is matched, then each matching sub-expression, i.e. the sub-expression matching
z and/or y, forms a new sub-goal that has to be checked recursively using the
sign specified by the rule for the corresponding sub-expression1~ if one of the
rules (5) to (10) is applied no new sub-goal is generated; the checking stops when

s We will assume that h(true) (resp. h(false)) is defined and that h(true) = true
(resp. ~,(fatse) = :aZse).

9 The symbol a used in roles (9) and (10) can only match by convention a variable
free element of C. The symbols x and y can match any formula.

10 Each male (1), (2), (3), (4), or (7) in fact specifies two rules: one for a positive sign
and another for a negative one.

139

all sub-goals have been checked, or a sub-goal does not match any rule. In the
first case the checking is said to be successful. The test, h - l (a) = {a}, can be

= {b = { b } } checked automatically provided that the set ~0
(or a subset of it) is provided by some mean (typically l=tinjective is provided by "-'0
the user at the time a particular function h is proposed): the test is positive if
only if a (which is variable free by definition) is only made of components of

i n j e c t l v e " " " W" ~njec t ive ~- B 0 (e.g. a = (Kant , I (a n y) g , , , ,]th B 0 = {Kany}).

F o r m u l a S ign x y
(1) x A y + / - + / - + / -
(2) ~ v y + / - + / - + / -
(3) ~= + / - - / +
(4) x: :Vy + / - - / + + / -
(5) = y -

F o r m u l a S ign
(6) x y -

(7) true, f a l se + / - -
(8) c known_in s -
(9) x = a s.t.]~-l(a) = {a} +

(10) a e e s.t.]~-l(a) ---- {a} +
]igure (3)

P r o p o s i t i o n 9 . The previous algorithms always terminates. Whenever it suc-
ceeds then taking po to be h(p) we have V=.pJh(x)) ~ p(x) g the goal was

positive and Vx.p(=) ~ p0(~(=)) otherwise.

Proof. The proof of termination is straightforward. The proof of correctness is
done by structural induction on p. This leads to one induction step per rule.
For the positive side of rule (1) we have to prove that given any four logical
formulae q, q', qa, q~, that satisfy Vx.qa(i~(x)) =a q(x) and Vx.q~(]~(x)) :=a q'(x)
then Vx.p~(h(x)) ==> p(x) where p = q A q' and Pa - " qa A ql a. For the negative
side of rule (1) and for rules (2) to (7), the proof is similar. For rule (8) we just
need to use proposition 8. For rule (9) (resp. for rule (10)) we use the fact that
h - l (a) = {a} to prove that x' E]~-l(x) =a x' = a (resp. that e' E h- l (e) ::a a e
el).

The algorithm will thus be used to automate steps (a) and (b) in all situations
where the algorithm succeeds. In case of failure the unsatisfied sub-goals can still
be discharged using theorem proving, or a new formula verifying the sub-goal
can be proposed by the user. In practice it has always been quite easy to add new
rules similar to rules (9) and (10) in the rare cases of failure of the algorithm.
As an illustration of the use of the proposed algorithm let us first consider the
first kind of security properties identified in section 4, i.e. -~(c known_ in s).
The algorithm proceeds as follows: the initial goal is positive as it used for step
(b); rule (3) is applied with a positive sign and with x matching sub-expression
c known_in s; in the column for x, we find a negative sign associated to a
positive goal (i.e. the sign of the goal is in the column "Sign", here on the left
side of the column); thus a new negative sub-goal c known_in s is generated;
this negative sub-goal matches rule (8) a n d the checking succeeds. Thus the
only problem here is to find an adequate function h. We propose, h such that
h(k) -- i f k = K s l t h e n K s t else gother and]~(d) -- Danu, where d is a typed
variable that is supposed to range over domain D. For keys, h will return either

140

K s 1 or Koth~r~ The second key, Koch,,., will necessarily be part of the intruder
knowledge for]~(M) (i.e. Ifothe~ C_]~(sx)), but the first one K s t should not be
deducible from h(si). It is private. The distinction between these two kinds of
keys is essential here: at least one key must be private; the other ones which
can be represented using (i.e. collapsed into) a single key Koth~r may be known
by the intruder. The same distinction between private and non private data is
on the other hand not useful here for basic data. Thus h will return the same
value for eli da~a in Deny, and this basic data does not need to be private (i.e.
D~,y known_in]~(st)). After a few steps the knowledge of the intruder will thus
typically be h(si) = [(othe," U .Deny U (K, D)K;1. The previous discussion is quite
representative of issues that have to be considered during the identification of h.
A misconception in h results in the identification of non existent flaws, and can
easily be fixed by reducing some of the collapses formalized by h.

Let us now consider the example of invariant (I): V k, z. (k,x) E dA
(k,x) E ds. First the formula is transformed into an equivalent quantifier
free formula. This is done by introducing two constants (i.e. eigenvariables),
let us say t" '-thi~ and Dthis. Then we define h such that h(k) = i f k =
K-~lthen K s 1 else~f k = [(tin, then Kthi~ else Kother and h(d) =
i f d = Dthi~ then Dth~ else Dother. Thus ~"0~injectlve ---- {Dtm~, [(thi~, K S }.
The previous algorithm terminates successfully using rule (10) in particular,
where a matches (Dthi,, [(this). The same invariant (Dthl,,Kthis) E dA =~
(Dthi~, [(this) E ds, can thus be used on M and]~(M). The automatic checking of
the invariant completes successfl~lly on]~(M). Indeed if the ds directory is chosen
to be both functional and injective then]~(ds) = (Dthl,, Kthis)U (Dother, Kother)
and]~(da) C h(ds) on all states of T~(h(M)).

Now for invariant (2), i.e. Yk, x.(k,x)K;~ known_in s[=~ (x,k) E
ds, we can use the same function h as for invariant (1). For similar rea-
sons, the algorithm terminates successfully and the abstract invariant, i.e.
(Kthi~, Dthi~)Kst known_in h(si) ~ (Dthis,(~(thi~) E ds, can be checked au-

tomatically on h(M).

7 Conclus ion

We have shown how to automate the formal verification of cryptographic proto-
cols for a large variety of security properties. The proposed approach relies on the
general theorem proving framework originally proposed in [2] and incorp9rates
abstract interpretation inspired facilities, thus applying techniques developed for
the verification of general temporal properties (i.e. [6, 4, 5, 9, 12]). We have first
transposed work in [4, 9, 12] to the framework of verification of security proper-
ties proposed in [2]. This entails providing a decision procedure for the intruder's
(unbounded) knowledge. But we have also significantly improved the mechaniza-
tion proposed in [9] by providing an algorithm for computing the abstract model
and the abstract properties, given an abstraction function. The algorithm may

141

fail to show that a particular sub-expression meets the sub-goal. In this situation,-
which is very rare in practice the user should then either prove manually that
the problematic sub-expression indeed meets the sub-goal, or should provide a
new sub-expression himself. An alternative, more restrictive, but probably more
elegant approach would be to characterize the precise language for which the ab-
stract property can be computed automatically and restrict the logic language
that can be used for describing the protocol and for expressing security proper-
ties. We would then consider the checking algorithm of section 6 as a typing or
static inference algorithm. In doing so we would obtain a complete mechaniza-
tion in all cases once the abstraction function is provided. The approach that is
proposed here for the verification of cryptographic protocols is somewhat more
complex than the two model-checking based approaches proposed so far (i.e. [11]
and [7]). This is mainly because the latter approaches do not encompass the first
abstraction phase, and the user has to provide the simplified finite model directly.
There is thus a risk that the informal abstraction step implicitly performed by
the user is unsafe and compromises the result of the analysis itself (by validating
problematic protocols). The main objective of the proposed approach is indeed

�9 to prove the absence of flaws, and not only to identify flaws. The two kinds of
approaches are thus complementary in their objectives. In order to cope with
the abstraction problem, some guidelines are provided in [11] and are informal!y
justified for the writing of the finite model. For example, the number of different
keys that the intruder may use is specified. This number is independent of the
protocol or of the property at hand. Even if this is acceptable in practice for
many authentication protocols it is a severe limitation for more general crypto-
graphic protocols, as it is quite easy to exhibit protocols for which problematic
scenarios require larger numbers of distinct keys. In the proposed approach, the
number of distinct keys (featured by the size of the set h(K), e.g. 2 and 3 in
the examples of the previous section) will typically depend on the property and
the protocol at hand. Finally we believe that some of the results presented here
are quite general and could also be used with pure model checking approaches.
In [11] and [7], for example, the number of internal steps that the intruder may
perform in order to deduce new data from existing one is implicitly bounded so
as to keep the model finite. In many cases (i.e. for many protocols) this decision
could be justified formally using the model and the results of [2]. But the decision
algorithm proposed in section 5 in fact suppresses the need for such limitation of
the number of steps, and could be used in conjunction with approaches like [11]
and [7]. The approach is currently being applied successfully for the verification
of large electronic commerce protocols 11. The abstracted models experimented
so far have always been very small in terms of the number of states. This is
mainly clue to the fact that in the proposed approach an abstract function has
only to preserve the particular property for which it is provided and not for a
whole logic or a class of properties as it is the case in other approaches such as
[11I, [7], or [6, 10, S] for example.

~1 http://www.dyade.fr/actions/VIP/vip.html

142

References

1. J.-P. Bans and D. Le M~tayer. Gamma and the chemical reaction model: ten
years after. In Coordination programming: mechanisms, models and semantics.
World Scientific Publishing, IC Press, 1996.

2. D. Bolignano. Formal verification of cryptographic protocols. In Proceedings of
the third ACM Conference on Computer and Communication Security, 1996.

3. D. Bolignano. Towards the Formal Verification of Electronic Commerce Protocols.
In Proceedings of the 10 th IEEE Computer Security Foundations Workshop. IEEE,
June 1997.

4. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction, ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994.

5. Rance Cleaveland, Purush Iyer, and Daniel Yankelevich. Optimality in abstrac-
tions of model checking. In Proceedings of SAS'95. LNCS, 1995.

6. Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive
systems: Abstractions preserving VCTL', 3CTL" and CTL*. In E.-R. Olderog,
editor, Proceedings of the IFIP WG2.1/WG2.2/WG~.3 Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), IFIP Transactions,
Amsterdam, June 1994. North-Holland/Elsevier.

7. G.Leduc, O. Bonaventure, E. Koerner, L. L~onard, C. Pecheur, and D. Zanetti.
Specification and verification of a ttp protocol for the conditional access to services.
In Proceedings of the 12th Workshop on the Application of Formal Methods to
System Development (Univ Montreal), 1996.

8. S. Graf. Verification of a distributed cache memory by using abstractions. In
Workshop on Computer.Aided Verification, CA V'9$, Stanford. LNCS 818, Springer
Verlag, jun 1994.

9. Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe FME '96, volume
1051 of Lecture Notes in Computer Science, pages 662-681, Oxford, UK, March
1996. Springer-Verlag.

10. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserv-
ing abstractions for the verification of concurrent systems. Formal Methods in
System Design Volume 6, Issue 1, 1995.

11. G. Lowe. An attack on the needham-schroeder publlc-key protocol. In Information
Processing Letters, 1995.

12. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CA V '96, volume 1102 of Lecture
Notes in Computer Science, pages 411-414, New Brunswick, N J, July/August 1996.
Springer-Verlag.

