Abstract
A scale space for images painted on surfaces is introduced. Based on the geodesic curvature flow of the iso-gray level contours of an image painted on the given surface, the image is evolved and forms the natural geometric scale space. Its geometrical properties are discussed as well as the intrinsic nature of the proposed flow. I.e. the flow is invariant to the bending of the surface.
This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research under DE-AC03-76SFOOO98, and ONR grant under NOOO14-96-1-0381.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel. Axioms and fundamental equations of image processing. Arch. Rational Mechanics, 123, 1993.
L. Alvarez, P. L. Lions, and J. M. Morel. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal, 29:845–866, 1992.
D. L. Chopp and J. A. Sethian. Flow under curvature: Singularity formation, minimal surfaces, and geodesies. Jour. Exper. Math., 2(4):235–255, 1993.
C. L. Epstein and M. Gage. The curve shortening flow. In A. Chorin and A. Majda, editors, Wave Motion: Theory, Modeling, and Computation. Springer-Verlag, New York, 1987.
L. M. J. Florack, A. H. Salden, B. M. ter Haar Romeny, J. J. Koendrink, and M. A. Viergever. Nonlinear scale-space. In B. M. ter Haar Romeny, editor, Geometric-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994.
D. Gabor. Information theory in electron microscopy. Laboratory Investigation, 14(6):801–807, 1965.
M. Gage and R. S. Hamilton. The heat equation shrinking convex plane curves. J. Diß. Geom., 23, 1986.
M. A. Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26, 1987.
M. A. Grayson. Shortening embedded curves. Annals of Mathematics, 129:71–111, 1989.
R. Kimmel and A. M. Bruckstein. Shape offsets via level sets. CAD, 25(5):154–162, March 1993.
R. Kimmel and N. Kiryati. Finding shortest paths on surfaces by fast global approximation and precise local refinement. Int. J. of Pattern Rec. and AI, to appear 1996.
R. Kimmel and G. Sapiro. Shortening three dimensional curves via two dimensional flows. International Journal: Computers & Mathematics with Applications, 29(3):49–62, March 1995.
R. Kimmel, N. Sochen, and R. Malladi. From high energy physics to low level vision. In Lecture Notes In Computer Science (this collection). Springer-Verlag, 1997.
M. Lindenbaum, M. Fischer, and A. M. Bruckstein. On Gabor's contribution to image enhancement. Pattern Recognition, 27(1):1–8, 1994.
S. J. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12–49, 1988.
In B. M. ter Haar Romeny, editor, Geometric-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994.
G. Sapiro and A. Tannenbaum. On invariant curve evolution and image analysis. Indiana University Mathematics Journal, 42(3), 1993.
J. A. Sethian. A review of recent numerical algorithms for hypersurfaces moving with curvature dependent speed. J. of Diff. Geom., 33:131–161, 1990.
N. Sochen, R. Kimmel, and R. Malladi. From high energy physics to low level vision. Report LBNL 39243, LBNL, UC Berkeley, CA 94720, August 1996. http://www.lbl.gov/~ron/belt-html.html.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kimmel, R. (1997). Intrinsic scale space for images on surfaces: The geodesic curvature flow. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds) Scale-Space Theory in Computer Vision. Scale-Space 1997. Lecture Notes in Computer Science, vol 1252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63167-4_52
Download citation
DOI: https://doi.org/10.1007/3-540-63167-4_52
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63167-5
Online ISBN: 978-3-540-69196-9
eBook Packages: Springer Book Archive