Abstract
In this paper we develop the concept of a polygon-offset distance function and show how to compute the respective nearest- and furthest-site Voronoi diagrams of point sites in the plane. We provide optimal deterministic O(n(log n + log m) + m)-time algorithms, where n is the number of points and m is the complexity of the underlying polygon, for computing compact representations of both diagrams.
Work on this paper by the first and the third authors has been supported in part by the U.S. ARO under Grant DAAH04-96-1-0013. Work by the second author has been supported in part by the National Science Foundation under Grant CCR-93-1714. Work by the third author has been supported also by NSF grant CCR-96-25289.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
O. Aichholzer and F. Aurenhammer, Straight skeletons for general polygonal figures in the plane, Proc. 2nd COCOON, 1996, 117–126, LNCS 1090, Springer Verlag.
O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner, A novel type of skeleton for polygons, J. of Universal Computer Science (an electronic journal), 1 (1995), 752–761
G. Barequet, A. Briggs, M. Dickerson, and M.T. Goodrich, Offset-polygon annulus placement problems, these proceedings, 1997.
L.P. Chew and R.L. Drysdale, Voronoi diagrams based on convex distance functions, Technical Report PCS-TR86-132, Dept. of Computer Science, Dartmouth College, Hanover, NH 03755, 1986; Short version: Proc. 1st Symp. on Comp. Geom., 1985, 324–244.
S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), 153–174.
J.L. Kelley and I. Namioka, Linear Topological Spaces, Springer Verlag, 1976.
D. Kirkpatrick and J. Snoeyink, Tentative prune-and-search for computing fixed-points with applications to geometric computation, Fund. Informaticæ, 22 (1995), 353–370.
R. Klein, Concrete and abstract Voronoi diagrams, LNCS 400, Springer Verlag, 1989.
R. Klein, K. Mehlhorn, and S. Meiser, Randomized incremental construction of abstract Voronoi diagrams, Comp. Geometry: Theory and Applications, 3 (1993), 157–184.
R. Klein and D. Wood, Voronoi diagrams based on general metrics in the plane, Proc. 5th Symp. on Theoret. Aspects in Comp. Sci., 1988, 281–291, LNCS 294, Springer Verlag.
M. McAllister, D. Kirkpatrick, and J. Snoeyink, A compact piecewise-linear Voronoi diagram for convex sites in the plane, D&CG, 15 (1996), 73–105.
K. Mehlhorn, S. Meiser, and Ó'Dúlaing, On the construction of abstract Voronoi diagrams, Discrete & Computational Geometry, 6 (1991), 211–224.
K. Mehlhorn, S. Meiser, and R. Rasch, Furthest site abstract Voronoi diagrams, Technical Report MPI-I-92-135, Max-Planck-Institut für Informatik, Saarbrücken, Germany. 1991
D. Rappaport, Computing the furthest site Voronoi diagram for a set of disks, Proc. ist Workshop on Algorithms and Data Structures, LNCS, 382, Springer Verlag, 1989, 57–66.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barequet, G., Dickerson, M.T., Goodrich, M.T. (1997). Voronoi diagrams for polygon-offset distance functions. In: Dehne, F., Rau-Chaplin, A., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1997. Lecture Notes in Computer Science, vol 1272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63307-3_60
Download citation
DOI: https://doi.org/10.1007/3-540-63307-3_60
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63307-5
Online ISBN: 978-3-540-69422-9
eBook Packages: Springer Book Archive