Preview
Unable to display preview. Download preview PDF.
References
Trefethen L. N., Halpern N. Well-posedness of one-way wave equations and absorbing boundary conditions. Math. Comp., v.47, 1986, pp. 421–435.
Engquist B., Majda A. Absorbing boundary condition for the numerical simulation of waves. Math. Comp., v.31, 1977, pp. 629–651.
Malyshkin V. Linearized mass computations.-In Proceedings of PaCT-91 International conference, September 1991, Novosibirsk, Russia. World Scintific, Singapore, pp.339–354.
V. I. Kostin, V. A. Tcheverda. R-pseudoinverse for compact operators in Hilbert spaces: existence and stability, J. of Ill-Posed and Inverse Problems. (2): 23–46, 1995.
V. I. Kostin, V. G. Khajdukov, V. A. Tcheverda. On r-solution of non-linear equations, in Advanced Mathematics: Computations and Applications, eds. A.S.Alekseev, N.S.Bakhvalov, NCC publisher, 286–291, 1995.
V. G. Khajdukov, V. I. Kostin, and V. A. Tcheverda The r-solution and Its Application in Linearized Waveform Inversion for a Layered Background, in Inverse Problems in Wave Propagation (v.90 in the “IMA Volumes in Mathematics and its Application”), eds. Guy Chavent et al., pp. 277–294, Springer-Verlag New York Publishers, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khajdukov, V.G. et al. (1997). Modelling of seismic waves propagation for 2D media (direct and inverse problems). In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 1997. Lecture Notes in Computer Science, vol 1277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63371-5_36
Download citation
DOI: https://doi.org/10.1007/3-540-63371-5_36
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63371-6
Online ISBN: 978-3-540-69525-7
eBook Packages: Springer Book Archive