
Restart Tableaux with Selection Function

Christian Pape and Reiner H�ahnle

Universit�at Karlsruhe

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

76128 Karlsruhe, Germany

fpape,reinerg@ira.uka.de

Abstract. Recently, several di�erent sound and complete tableau cal-

culi were introduced, all sharing the idea to use a selection function

and so-called restart clauses: A-ordered tableaux, tableaux with selec-

tion function, and strict restart model elimination. We present two new

sound and complete abstract tableau calculi which generalize these on

the ground level. This makes di�erences and similarities between the

calculi clearer and, in addition, gives insight into how properties of the

calculi can be transferred among them. In particular, a precise borderline

separating proof conuent from non-proof conuent variants is exhibited.

1 Introduction

In this paper we introduce two new ground1 tableau calculi, called restart tab-

leaux and strict restart tableaux. Restart tableaux generalize the recently devel-
oped A-ordered tableaux [2] and tableaux with selection function [3], whereas
strict restart tableaux subsume strict restart model elimination [1].

All of these calculi can be uniformly described by restricting the usual ex-
tension rule of clause tableaux:

1. a selection function (i.e., a mapping from clauses to subsets of their literals)
restricts possible connections of clauses used for extension steps;

2. extension steps are either weakly connected (i.e. to any branch literal) or
strongly connected (i.e. to a leaf);

3. so-called restart steps (extension steps with certain unconnected clauses)
are used to continue proof search, whenever it is not possible to employ
connected extension steps.

These abstract features are used by the currently known calculi in di�ering
ways. Our notions (see Section 3.1 below) generalize them all.

Further ingredients of tableau calculi specify to which extent branches are
regular (i.e. are free of repetitions) and which literals are permitted for closing
branches. It turns out that these latter conditions are determined by those on

1 A thorough treatment of �rst-order logic would have doubled the size of the paper,

although there are no principal obstacles. See the last section for a few hints to

lifting.

restart steps and on the amount of strong connections. In fact there is a di-
rect trade-o� between restrictive restarts and preference of strong connections
(i.e. high connectivity) and regularity/reduction steps (at least if complete cal-
culi are desired).

In this paper we de�ne abstract tableau calculi whose properties can be
adjusted within a wide range while the completeness proof is fully generic. This
leaves open the possibility to �ne-tune a calculus to each theorem one wants to
prove with it.

An important di�erence between A-ordered tableaux and tableaux with se-
lection function on the one side and restart model elimination on the other is
the lack of proof conuency2 in the latter. We investigate the reasons for this
and show that already a very slight liberalization of restart model elimination
gives proof conuency. Thus we exhibit a precise proof theoretical borderline
separating calculi that are proof conuent from those that are not. Moreover,
restart tableaux turn out to be a proof conuent procedure which is extremely
close to restart model elimination.

Section 2 states basic notions and Section 3 briey reviews existing calculi.
In Section 4 we de�ne restart tableaux and prove their completeness. A-ordered
tableaux and tableaux with selection function are obtained as instances. In Sec-
tion 5 restart tableaux are modi�ed to strict restart tableaux which are also
proven to be complete. Strict restart model elimination is obtained as an in-
stance. At the end we make some brief remarks about lifting to �rst-order logic.

2 Notation

From a signature � (predicate, constant and function symbols) atoms and lit-
erals are constructed using the negation sign : as usual. The set of all literals
over � is denoted by L� . We omit the index � if no confusion can arise. In this
paper we only deal with ground clauses that is all atoms are variable free.

A clause is a sequence L1_ : : :_Ln; n � 1 of disjunctively connected literals.
C is the set of all clauses. We write L 2 C for short if a literal L occurs in a
clause C. L is the complement of a literal L, i.e. A = :A and :A = A if A is
an atom.

A tableau T is an ordered tree where the root node is labeled with true or a
literal and all other nodes are labeled with literals. For a node n of T the clause
clauseof(n) is constructed from the literals of the children of n in the order from
left to right. A path from the root node to a leaf literal of T is called a branch
of T. A tableau is closed if every branch contains (at least) two complementary
literals. We sometimes describe a branch as a �nite set of literals. We also often
identify branches with the set of literals on them.

2 A calculus is proof conuent if each partial proof for a provable theorem can be

completed. Typical well-known examples of non-proof conuent calculi are model

elimination and linear resolution.

A branch B is said to be regular if (i) every literal of a node of B occurs
only once on B and (ii) clauseof(n) is no tautology for every node n of B. A
tableau T is regular if all branches of T are regular.

Partial interpretations are associated with consistent sets of ground lit-
erals. An interpretation I satis�es a ground clause C i� there is an L 2 C with
L 2 I . I is a model for a set S of clauses i� I satis�es all clauses of S.

3 Tableaux with Restarts and Selection Function

In this section we rehash de�nitions of tableaux with selection function [3], of
A-ordered tableaux [2], and of restart model elimination [1]. For motivation and
more examples, see the papers cited. Completeness of these calculi is obtained
later from more general results and not re-stated here. We only give ground
versions. Note that in the following the various notions of restart and of selection
function slightly di�er among the calculi. We unify them later.

3.1 Tableaux with Selection Function

De�nition 1. A selection function is a total function f from ground clauses
to sets of literals such that ; 6= f(C) � C for all C 2 C.

f is used to restrict connections between clauses to literals selected by f .
Unrestricted extension steps, so called restarts, are only allowed with clauses
that have at least a connection to another clause.

De�nition 2. Let S � C, f a selection function, B a tableau branch. C is a
restart clause (of S) i� there is a D 2 S and a literal L such that L 2 f(D)
and L 2 f(C). C has a weak connection via f and L into B i� there is an
L 2 B such that L 2 f(C).

De�nition 3. Let S � C, f a selection function, then a tableau with selection

function f for S is a regular clause tableau T such that for every node n of T
the clause clauseof(n) (i) has a weak connection via f into the branch ending in
n or (ii) it is a restart clause.

Example 1. Fig. 1 shows a closed tableau with selection function f for the set
of ground clauses S = f:A _ :B;A _ B;A _ :C;B _ C;B _ :Cg (f selects the
underlined literals). The �rst three clauses of S can be used for restarts. The
solid lines correspond to extension steps (weak connection) and the dashed lines
to other closures.

3.2 A-ordered tableaux

De�nition 4. An A-ordering is an irreexive, transitive relation � on atoms,
such that for all atoms A, B: A � B implies A� � B� for all substitutions �
(stability wrt substitutions).

true

:A

A C

A :C

:B

B C

B :C

Fig. 1. Tableau with selection function

A-orderings can be extended to literal orderings via L � L
0 i� atom(L) �

atom(L0) (where atom(A) = atom(:A) = A). As in ordered resolution connec-
tions between clauses are restricted to literals that occur �-maximally in these
clauses.

De�nition 5. A literal Lj occurs �-maximally in a clause L1 _ : : : _ Ln i�
Lj 6� Li for all i = 1; : : : ; n.

A clause C = L1 _ : : : _ Ln has a �-maximal connection to a clause
C
0 = L

0

1
_ : : : _ L

0

n0 i� Li = L
0

j for some 1 � i � n; 1 � j � n
0, Li occurs

maximally in C, and L
0

j occurs maximally in C
0. If both C;C

0 2 S then C is a
restart clause of S.

A clause C has a maximal connection into a set of literals B i� C has
a maximal connection to a clause consisting of a single literal of B.

A-ordered tableaux are regular clause tableaux with the restriction that ex-
tension steps are only possible with clauses that have a maximal connection into
the branch they extend or to another clause of S:

De�nition 6. Let � be an A-ordering and S a set of ground clauses. A �-
ordered clause tableau for S is a regular clause tableau T for S such that
for every node n of T the clause clauseof(n) (i) has a �-maximal connection into
the branch ending in n or (ii) it is a restart clause.

Every A-ordering � induces a selection function f
�

on literals (such that
f
�
(C) are exactly the �-maximal literals of C), hence A-ordered tableaux can

be seen as an instance of tableaux with selection function, see [3].

Example 2. Let S be as in Ex. 1. For the A-ordering A > B > C obviously
f< = f on S, where f is as in Ex. 1. Thus, Fig. 1 constitutes as well an A-
ordered tableaux for S and <.

3.3 (Strict) Restart Model Elimination

In contrast to tableaux with selection function in restart model elimination
(RME) the selection function f (i) applies only to non-negative clauses and

(ii) selects exactly one positive literal. As a consequence, a clause is never con-
nected via f to another clause and, thus, there are no restart clauses in the sense
of tableaux with selection function and A-ordered tableaux. Instead, the role of
restart clauses is taken on by negative clauses.

De�nition 7. A selection function is a total function f from non-negative
ground clauses to literals, such that f(C) occurs in C and is positive. Every
negative clause is a restart clause.

RME is a re�nement of model elimination [5], hence all connections are re-
stricted to the leaf literals of a branch.

De�nition 8. Let f be a selection function, B a tableau branch, C 2 C. If L
is the leaf literal of B and L = f(C), then C has a strong connection via f

and L into B.

A clause that has a connection (either weak or strong) into a branch B, where
it is used gives rise to immediate closure of at least one of the new branches,
namely the one with a selected (or maximal) literal L whose complement occurs
on B. In this case we say that L is a connection literal. Closed branches not
closed by a connection literal are said to contain a reduction step.

Most implementations of theorem provers based on model elimination and
on RME are using Prolog Technology Theorem Proving (PTTP) [6]. In PTTP
a set of clauses is compiled into a Prolog program such that every literal of a
clause is the head of a Prolog clause (so called contrapositives). In RME only
one contrapositive of each non-negative clause needs to be used in a PTTP
implementation. This can lead to a signi�cant reduction of the search space
during the proof.

Unfortunately, the above restriction in combination with regularity [4] leads
to an incomplete calculus (see Ex. 3). To restore completeness, the regularity
condition of RME has to be relaxed:

De�nition 9. Given a tableau T and a subbranch3 hLn0 ; : : : ; Lnii of T. Then
hLn1 ; : : : ; Lnii is called a block (corresponding to a restart clause C) i�
clauseof(n0) = C is a restart clause, for no j = 1; : : : ; i � 1 is clauseof(nj) a
restart clause, and

1. either ni is a leaf of T or
2. clauseof(ni) is a restart clause.

A branch B is blockwise regular i� every block of B is regular.

De�nition 10. A restart model elimination (RME) tableau for a set S of
ground clauses is a clause tableau T for S such that:

1. For every node n of T (i) clauseof(n) has a strong connection into the branch
ending in n, or (ii) clauseof(n) is a restart clause and the label of n is a
positive literal.

3 The sequence of labels of a contiguous subset of the nodes in a branch.

2. Every branch is (i) regular wrt positive literals (positive regular) and (ii)
blockwise regular.

Example 3. Let S be as in Ex. 1. As f selects exactly one positive literal in
each non-negative clause f is a suitable selection function for a restart model
elimination tableau, if we ignore it on the only negative clause. This clause is by
Def. 7 also the only restart clause. Fig. 2 shows an RME tableau for S. Due to
symmetry in S the open branch on the right can be closed in a similar way as
the left one. Note that for completeness of the calculus it is essential to permit
multiple occurrences of negative literals on a tableau branch (condition 2.(i) in
Def. 10).

true

:A

A C

:A

A :C

:B

B :C

:B

Fig. 2. A restart model elimination tableau

In a PTTP implementation reduction steps usually slow down the speed of
the theorem prover, because they involve search among the literals on the current
branch. The following modi�cation of RME restricts reduction steps to negative
leaf literals which gains some bene�t in a PTTP implementation.

De�nition 11. A branch B in a strict restart model elimination tableau

for a set S of ground clauses is closed if its leaf literal L is (i) a connection
literal or (ii) is negative and L 2 B.

4 Restart Tableaux with Selection Function

In RME the selection function selects exactly one positive literal, while in tab-
leaux with selection function all literals can be selected. In restart tableaux we
use a notion of selection function which generalizes Defs. 1, 7. This version of
selection function is meant in the remainder of the paper if not explicitly said
otherwise.

De�nition 12. A selection function is a total function f from ground clauses
to sets of literals such that f(C) � C for all C 2 C.

Next we unify the various notions of restart clause.

De�nition 13. Let S � C, f a selection function, B a tableau branch. C is a
restart clause (of S) i� (i) there is a D 2 S and a literal L with L 2 f(D)
and L 2 f(C) or (ii) f(C) = ;.

In tableaux with selection function a non-restart clause C can extend a
tableau branch B only if a selected literal of C is complementary to a literal
on B, whereas in restart model elimination C has to be complementary to the
leaf literal on B. Therefore, a unifying calculus has to deal with both kinds of
connections. We merely repeat (parts of) Defs. 2, 8:

De�nition 14. Given a clause C, a tableau branch B, and a selection function
f . Then C has a weak connection via f and L into B i� there exists L 2 B

with L 2 f(C). It has a strong connection via f and L into B i� L 2 f(C)
for the leaf literal L of B. In both cases we say that C is connected to B via

f (and L).

For a given set S of clauses we �x in advance whether a clause of S can
extend a tableau branch with a weak or with a strong connection. This leads to
a partition of S into two disjoint subsets Sw and Ss, such that

{ the clauses of Sw can extend a tableau branch B if they have a weak con-
nection into B,4 and

{ the clauses of Ss can extend B only if they have a strong connection into B.

It will become necessary to compare blocks (cf. Def. 9) wrt to their literal sets.
In the following de�nition and elsewhere we handle blocks (which are de�ned as
sequences of literals) as sets of literals without the danger of confusion.

De�nition 15. Two blocks b and b
0 are distinct i� neither b � b

0 nor b0 � b.

In the next de�nition a somewhat complicated notion of regularity is used
which is motivated as follows: A clause C 2 Sw can be used to extend a branch
B whenever a selected literal of C is complementary to a literal on B. The
complement of the connection literal can be anywhere in the current block.
Now, in the case of a strong connection two di�erent clause C;D 2 Ss may be
required to extend a branch via the same selected literal (in di�erent blocks)
which, therefore, occurs twice on this branch, cf. Figure 2. On the other hand, if
B contains a literal L such that its complement L is never selected in Ss, then
a clause of Ss can never extend a branch with leaf literal L and branch-wise
regularity can be enforced wrt such literals. Formally, these literals are de�ned
as LS;f = L�

S
C2Ss

fLj L 2 f(C)g.
If we choose, for example, Ss = ; then LS = L which implies the usual

regularity condition as of tableaux with selection function. If Sw = ; and the
selection function only selects positive literals, then LS contains at least all

4 Note that every strong connection is also a weak connection.

positive literals. This is the regularity condition of restart model elimination,
see Def. 10 2.(i).

The above considerations are summarized and formally expressed in the fol-
lowing de�nition.

De�nition 16. Sw [Ss is any partition of S � C and f a selection function. A
restart tableau (RT) for S and f is a clause tableau T for S such that:

1. For every node n of T one of the following holds:
(a) clauseof(n) 2 Ss has a strong connection via f into the block ending in

n (strong extension step);
(b) clauseof(n) 2 Sw has a weak connection via f into the block ending in

n (weak extension step);
(c) clauseof(n) is a restart clause and it is not possible to extend the block

above n with a strong or a weak extension step.
2. For every branch B of T all of the following hold:

(a) B is blockwise regular;
(b) B is regular wrt LS;f ;
(c) B contains only distinct blocks.

The de�nition of closure of RT tableaux is as usual (i.e. not as in Def. 11).

De�nition 17. A RT T for a ground clause set S is called saturated i� there
exists no RT T0 for S such that T is a proper subtree of T0.

Lemma18. Let S be a �nite set of ground clauses. Then every branch of a

saturated RT T for S is �nite.

Proof. First note that each block of a branch B of T is �nite by Def. 16.2a. By
Def. 16.2c there is a �nite number of possible di�erent blocks in B which proves
the claim. ut

Theorem19. Given a �nite unsatis�able set S of ground clauses and a selection

function f . Then there exists a closed RT for S and f .

Proof. By regularity we can assume that S contains no tautologies.
Assume there is no closed RT for S. Then, by Lemma 18, for every saturated

RT T for S an open and �nite branch B exists. The literals of B constitute a
partial interpretation I of S (via I = B).

Let S0 be the set of all clauses from S not satis�ed by I . As T is saturated
there is no restart clause in S

0, otherwise such a clause could be used to extend
B by Def. 16.1c.

J is the partial interpretation that satis�es the selected literals of clauses in
S
0. J is well-de�ned, otherwise two clauses of S0 would be connected via f and

hence restart clauses.
I [J is well-de�ned, too: If not, there are literals L 2 I and L 2 J . We

distinguish two cases: either (i) C 2 Sw or (ii) C 2 Ss, where C = L_L1_: : :_Ln
and L 2 f(C). We show that in both cases T is not saturated.

case (i) here we have C 2 Sw \ S
0 and C has a weak connection into a block

b of B. Any weak extension step (Def. 16.1b) with C produces several new
branches with leaf literals not already on B (otherwise C would not be in
S
0). Therefore, regularity is maintained.

case (ii) We show how to initiate a restart on the leaf of B and to extend B

with a new block, such that regularity still holds.
First select a block hL0n1 ; : : : ; L

0

nm
i of B with nodes n1; : : : ; nm and beginning

with a restart clause D such that L occurs in this block, say, L = L
0

ni
,

1 � i � m. Then extend B with D and clauseof(n1) up to clauseof(ni�1)
and call the resulting block b. This is possible, simply because it was possible
earlier in B, but we must take care to make b distinct from all other blocks.
This is done by extending b with C (recall that in the present case C 2
Ss \ S

0). This strong extension step (Def. 16.1b) generates n new distinct
blocks b1; : : : ; bn (see right part of Fig. 3) each of which satis�es Def. 16.2a{
16.2c:

(a) Every block bi is regular up to Li because it is a pre�x of a regular block
and B does not contain Li, otherwise I satis�es D.

(b) The bi do not contain a literal L0 2 LS;f : Such a literal causes a restart
and L0 would have to be the last node of b which then cannot be extended
by C. Thus, the new branches are regular wrt LS .

(c) each bi is a new distinct block on B, because it contains a literal Li not
occurring on B (otherwise C would not be in S

0).

We conclude that I [J is a model of S contradicting its unsatis�ability. ut

L0

n1

L0

n
i�1

L

L0

n1
L0

n
i�1

L

L L1 Ln
b1 bn

Fig. 3. Initiate a new restart (see text)

Note that, as a consequence of our proof, RT are proof conuent.
Ground completeness of tableaux with selection function follows easily from

Theorem 19:

Corollary 20 [3]. For each �nite unsatis�able set S of ground clauses and selec-

tion function f (in the sense of Def. 1) there exists a closed tableau with selection

function f for S.

Proof. Set Sw = S. Then LS contains all literals from S and, hence, every
branch of a restart tableau has to be regular wrt to all literals, which holds also
for tableaux with selection function. ut

Restart tableaux are impossible to instantiate to restart model elimination,
because restart model elimination is known not to be proof conuent.5 On the
other hand, if we allow restarts on negative leaf literals as well (and call the
resulting calculus unrestricted restart model elimination), then we obtain:

Corollary 21. For each �nite unsatis�able set S of ground clauses and selection

function f (in the sense of Def. 7) there exists an unrestricted restart model

elimination tableau for S and f .

Proof. In RME all non-restart clauses must be part of strong extension steps,
therefore set Ss = S. f selects only positive literals from a clause or none if the
clause is negative, hence LS;f contains at least all positive literals. For restart
tableaux these settings imply that each branch is blockwise regular and regular
wrt to positive literals. ut

It is remarkable that merely admitting positive literals in restart steps decides
whether restart model elimination is proof conuent or not.

5 Strict Restart Tableaux

Restart tableaux, although very close in spirit to restart model elimination, bear
a small, but crucial, di�erence to the latter: restarts are restricted to positive
leaf literals. In addition, in strict restart model elimination reduction steps with
negative leaf literals are excluded.

In this section we modify restart tableaux to a calculus of which (strict)
restart model elimination is an instance.

Recall the de�nition of the literal set LS;f in Section 4 which controls regu-
larity. Let LR � LS;f be any set that does not contain complementary literals.

De�nition 22. Sw [Ss is any partition of S � C and f a selection function. A
strict restart tableau (SRT) for S and f is a clause tableau T for S such

that:

1. For every node n of T one of the following holds:
(a) clauseof(n) 2 Ss has a strong connection via f into the block ending in

n (strong extension step);

5 Consider the unsatis�able set f:A;A _ :B;A _ :C;Cg and the partial tableau

generated by the �rst two clauses. The open branch with negative leaf :B cannot

be closed or extended.

(b) clauseof(n) 2 Sw has a weak connection via f into the branch ending in
n (weak extension step);

(c) clauseof(n) is a restart clause and the literal of n is not in fLjL 2 LRg.

2. For every branch B of T both of the following hold:

(a) B is blockwise regular;
(b) B is regular wrt LR.

De�nition 23. A branch B of an SRT is closed i� its leaf literal L is (i) a
connection literal or (ii) L 62 LR and there is L 2 B. The latter is called a strict

reduction step.

In comparison to restart tableaux one notes two important relaxations: weak
connections need not be local to a block anymore and blocks may be identi-
cal. Moreover, restarts must be permitted even when extensions steps are still
possible. For this reason RT and SRT are not instances of each other.

Some instances of strict restart tableaux are proof conuent, others are not,
so there is no way to obtain a completeness proof based on saturation as for
restart tableaux. One way to view strict restart tableau proofs is as a kind of
normal form for restart tableau proofs. The proof below is by a tableau transfor-
mation that computes exactly this normal form, thus establishing completeness
of strict restart tableaux. Note that this does not impose any assumption on
proof conuency of strict restart tableaux as we start out with a closed tableau.

Unfortunately, the transformation destroys regularity conditions Def. 16.2b
and 16.2c, because it copies parts of the proof tree. The following lemma shows
that at least Def. 22.2b can be regained. Details of proofs had to be left out due
to space restrictions, but the proofs are rather tedious than deep, anyway.

Lemma24. For each closed strict restart tableau T for S which is blockwise

regular but not necessarily regular wrt LR there exists a closed strict restart

tableau T0 for S which is also regular wrt LR.

Proof. The proof is by a careful analysis showing that critical occurrences of
duplicate literals can be deleted without changing the rest. ut

Theorem25. For any �nite unsatis�able set S � C and selection function f

there exists a closed strict restart tableau for S and f .

Proof. Two simple inductions (i) eliminate critical restarts by exchanging blocks,
(ii) remove critical reduction steps by copying suitable subtrees. Then Lemma 24
is applied. The details are straightforward, though tedious and technical. ut

Corollary 26 [1]. For any �nite unsatis�able set S � C and selection function

f (in the sense of Def. 7) there exists a strict restart model elimination tableau

for S and f .

Proof. Set Sw = ; and Ss = S. As f selects only positive literals in clauses of S,
LS;f consists of at least all positive literals, so take as LR � LS;f the set of all

positive literals. With these settings a strict restart tableau is blockwise regular,
positive regular, and reduction steps are only allowed on negative literals; thus
it is a strict restart model elimination tableau. ut

As noted in [1] completeness of RME can be derived from this result as well.

6 Outlook

We introduced two new abstract, sound and complete tableau calculi that gen-
eralize other calculi using restart clauses: A-ordered tableaux, tableaux with
selection function, and restart model elimination. This gives a whole spectrum
of new proof procedures that can be �ne-tuned at the selection function they use
and at the desired amount of connectivity in proofs. We show explicitly how reg-
ularity and restrictions on reduction steps are inuenced by the choice of these
parameters. Such knowledge can in the future provide the basis for computing
an instance of a proof procedure optimized for solving a given problem.

Our framework also helps to determine proof conuency of restart calculi. In
particular, restart tableaux which are proof conuent can be instantiated such
that they are extremely close to restart model elimination which is not.

Lifting of (strict) restart tableaux to �rst-order logic can be done as usual
if the selection function, resp., the A-ordering is stable wrt substitutions, cf.
Def. 4. In addition, a similar property has to be stated for the partition of S
into weakly and strongly connected clauses. In an optimal implementation this
approach leads to constraints for the regularity condition of restart tableaux.
Like in [3] for tableaux with selection function one can make a compromise and
get rid of the constraints in a slightly less restrictive proof procedure which
admits a much weaker assumption than stability wrt substitutions: stability wrt
variable renaming.

References

1. P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and

its Application to PTTP. Journal of Automated Reasoning, 13:339{359, 1994.

2. R. H�ahnle and S. Klingenbeck. A-ordered tableaux. Journal of Logic and Compu-

tation, 6(6):819{834, 1996.

3. R. H�ahnle and C. Pape. Ordered tableaux: Extensions and applications. In

D. Galmiche, ed., Proc. Int. Conf. on Analytic Tableaux, Nancy, LNCS. Springer-

Verlag, 1997, ftp://129.13.31.2/pub/haehnle/HaehnlePape.ps.gz.

4. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-perfomance the-

orem prover. Journal of Automated Reasoning, 8(2):183{212, 1992.

5. D. W. Loveland. A linear format for resolution. In Proc. IRIA Symp. Automatic

Demonstration, pages 147{162, Versailles, France, 1968. Springer-Verlag. Reprinted

in: J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical

Papers in Computational Logic 1967{1970, volume 2. Springer-Verlag, 1983.

6. M. E. Stickel. A prolog technology theorem prover. In E. Lusk and R. Overbeek,

editors, Proc. 9th International Conference on Automated Deduction, pages 752{753.

Springer LNCS, New York, 1988.

This article was processed using the LATEX macro package with LLNCS style

