Abstract
We study the problem of scheduling a set of n independent multiprocessor tasks with prespecified processor allocations on a fixed number of processors. We propose a linear time algorithm that finds a schedule of minimum makespan in the preemptive model, and a linear time approximation algorithm that finds a schedule of length within a factor of (1 + c) of optimal in the non-preemptive model.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Bianco, J. Blazewicz, P. Dell'Olmo, and M. Drozdowski. Scheduling Preemptive Multiprocessor Tasks on Dedicated Processors. Performance Evaluation, 20:361–371, (1994)
J. Blazewicz, P. Dell'Olmo, M. Drozdowski, and M.G. Speranza. Scheduling Multiprocessor Tasks on Three Dedicated Processors. Information Processing Letters, 41:275–280, (1992)
J. Blazewicz, M. Drabowski, and J. Weglarz Scheduling multiprocessor tasks to minimize schedule length. IEEE Transactions on Computing, 35(5):389–393, (1986)
E. G. Coffman, M. R. Garey, D. S. Johnson, and A. S. Lapaugh. Scheduling file transfers. SIAM J. Compt., 14(3):744–780, (1985)
P. Dell'Olmo, M. G. Speranza, and Z. Tuza. Efficiency and Effectiveness of Normal Schedules on Three Dedicated Processors. Submitted.
M. Drozdowski. Scheduling Multiprocessor Tasks — An Overview. Private communication, (1996)
J. Du, and J. Y-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAM J. Discrete Math., 2(4):473–487, (1989)
M. Garey, D. Johnson. Computers and Intractability, A Guide to the theory of NP-completeness. W. H. Freemann and Company, San Francisco, CA, (1979)
M. X. Goemans. An Approximation Algorithm for Scheduling on Three Dedicated Processors. Disc. App. Math., 61:49–59, (1995)
R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. AddisonWesley, Reading, MA, (1990)
R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan. Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Ann. Disc. Math., 5:287–326, (1979)
L. A. Hall and D. B. Shmoys. Jackson's rule for single-machine scheduling: making a good heuristic better. Mathematics of Operations Research, 17:22–35, (1992)
J. Hoogeveen, S. L. van de Velde, and B. Veltman. Complexity of Scheduling Multiprocessor Tasks with Prespecifaed Processors Allocation. Disc. App. Math., 55:259–272, (1994)
C. Kenyon, E. Rémila. Approximate Strip-Packing. Proceedings of the 37th Symposium on Foundations of Computer Science (FOGS), 31–36, (1996)
D. E. Knuth. The Art of Computer Programming, Vol.1: Fundamental Algorithms. Addison-Wesley, Reading, MA, (1968)
A. Krämer. Scheduling Multiprocessor Tasks on Dedicated Processors. PhD Thesis, Fachbereich Mathematik/Informatik, Universität Osnabrück, (1995)
H. Krawczyk, and M. Kubale. An approximation algorithm for diagnostic test scheduling in multicomputer systems. IEEE Trans. Comput., C-34(9):869–872, (1985)
M. Kubale. Preemptive Scheduling of Two-Processor Tasks on Dedicated Processors (in polish). Zeszyty Naukowe Politechniki Ślaskiej, Seria: Automatyka z.100, 1082:145–153, (1990)
H. W. Lenstra Integer Programming with a Fixed Number of Variables. Math. Oper. Res., 8:538–548, (1983)
B. Veltman, B. J. Lageweg, and J. K. Lenstra. Multiprocessor Scheduling with Communication Delays. Parallel Computing, 16:173–182, (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y. (1997). Scheduling independent multiprocessor tasks. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_1
Download citation
DOI: https://doi.org/10.1007/3-540-63397-9_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63397-6
Online ISBN: 978-3-540-69536-3
eBook Packages: Springer Book Archive