Skip to main content

Weighted graph separators and their applications

  • Conference paper
  • First Online:
Algorithms — ESA '97 (ESA 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1284))

Included in the following conference series:

Abstract

We prove separator theorems in which the size of the separator is minimized with respect to non-negative vertex costs. We show that for any planar graph G there exists a vertex separator of total sum of vertex costs at most \(c\sqrt {\Sigma _{v \in V(G)} (cost(v))^2 }\) and that this bound is optimal to within a constant factor. Moreover such a separator can be found in linear time. This theorem implies a variety of other separation results. We describe applications of our separator theorems to graph embedding problems, to graph pebbling, and to multi-commodity flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for graphs with an excluded minor and its applications. Proceedings of the 22nd Symp. on Theory of Computing, pages 293–299, 1990.

    Google Scholar 

  2. S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optimal simulations of tree machines. In Proc. 27th IEEE Symposium on Foundations of Computer Science (FOCS), pages 274–282, 1986.

    Google Scholar 

  3. S. N. Bhatt, F. R. K. Chung, J. W. Hong, F. T. Leighton, and A. L. Rosenberg. Optimal simulations by butterfly networks. In Proc. 20th ACM Symposium on Theory of Computing (STOC), pages 192–204, 1988.

    Google Scholar 

  4. S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout problems. Journal of Computer and System Sciences, 28:300–343, 1984.

    Google Scholar 

  5. Krzystof Diks, Hristo N. Djidjev, Ondrej Sykora, and Imrich Vrto. Edge separators of planar and outerplanar graphs with applications. J. Algorithms, 14:258–279, 1993.

    Google Scholar 

  6. Hristo N. Djidjev. A separator theorem. Compt. rend. Acad. bulg. Sci., 34:643–645, 1981.

    Google Scholar 

  7. Hristo N. Djidjev and Shankar Venkatesan. Reduced constants for simple cycle graph separation. Acta Informatica, 1995. in print.

    Google Scholar 

  8. G.N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing, 16:1004–1022, 1987.

    Google Scholar 

  9. Hillel Gazit and Gary L. Miller. Planar separators and the Euclidean norm. In SIGAL 90, Lecture Notes in Computer Science, vol. 450, pages 338–347. SpringerVerlag, Berlin, Heidelberg, New York, Tokio, 1990.

    Google Scholar 

  10. John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for graphs of bounded genus. J. Algorithms, 5:391–407, 1984.

    Google Scholar 

  11. John R. Gilbert, Donald J. Rose, and Anders Edenbrandt. A separator theorem for chordal graphs. SIAM Journal on Algebraic and Discrete Methods, pages 306–313, 1984.

    Google Scholar 

  12. John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection algorithm. Numerische Mathematik, 50:377–404, 1987.

    Google Scholar 

  13. Michael T. Goodrich. Planar separators and parallel polygon triangulation. Proceedings of 24th Symp. on Theory of Computing, pages 507–516, 1992.

    Google Scholar 

  14. Samir Khuller, Balaji Raghavachari, and Neal Young. Designing multi-commodity flow trees. Information Processing Letters, 50:49–55, 1994.

    Google Scholar 

  15. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar graphs. In 26th ACM Symp. Theory of Computing, pages 27–37, 1994.

    Google Scholar 

  16. Leighton, Makedon, Plotkin, Stein, Tardos, and Tragoudas. Fast approximation algorithms for multicommodity flow problems. Journal of Computer and System Sciences, 50:228–243, 1995.

    Google Scholar 

  17. F. Thomas Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In Proceedings of the 29th IEEE Symposium on the Foundations of Computer Science, pages 422–431, 1988.

    Google Scholar 

  18. C.E. Leiserson. Area efficient VLSI computation. In Foundations of Computing. MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  19. Richard J. Lipton, D. J. Rose, and Robert E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal., 16:346–358, 1979.

    Google Scholar 

  20. Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math, 36:177–189, 1979.

    Google Scholar 

  21. Richard J. Lipton and Robert E. Tarjan. Applications of a planar separator theorem. SIAM Journal on Computing, 9:615–627, 1980.

    Google Scholar 

  22. Gary L. Miller.Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer and System Sciences, pages 265–279, 1986.

    Google Scholar 

  23. Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach to graph separators. Proceedings of the 32nd FOCS, pages 538–547, 1991.

    Google Scholar 

  24. Gary L. Miller and William Thurston. Separators in two and three dimensions. Proceedings of the 22nd Symp. on Theory of Computing, pages 300–309, 1990.

    Google Scholar 

  25. B. Monien and H. Sudborough. Comparing interconnection networks. In Symposium on Mathematical Foundations of Computer Science, volume 320, pages 138–153, 1988.

    Google Scholar 

  26. N. Pippenger. Advances in pebbling. In Annual International Colloquium on Automata, Languages and Programming, pages 407–417, 1982.

    Google Scholar 

  27. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14:217–241, 1994.

    Google Scholar 

  28. Shang-Hua Teng. Points, spheres, and separators: A unified geometric approach to graph partitioning. Ph.D.-Thesis CMU-CS-91-184, Carnegie Mellon University, Pittsburgh, 1991.

    Google Scholar 

  29. H. Venkateswaran and M. Tompa. A new pebble game that characterizes parallel complexity classes. SIAM Journal on Computing, 18:533–549, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer Burkard Gerhard Woeginger

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djidjev, H.N. (1997). Weighted graph separators and their applications. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-63397-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63397-6

  • Online ISBN: 978-3-540-69536-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics