Abstract
We show that seven discrete optimization problems from different fields of discrete mathematics (such as linear algebra, combinatorics, ] geometry, and functional analysis) that at first sight seem to be quite different prove to be in fact rather close to each other. This closeness enables us, given an algorithm for one problem, to construct an optimization or approximation algorithm for solving the other problems in the list. For each problem, an extremum function is defined which characterizes the performance of the optimal solution of the problem in the worst case. Relations between these extremum functions are derived.
Supported by the Russian Foundation for Fundamental Research (Grant 96-01-01591).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon N., Spencer, J., Erdös, P.: The probabilistic method. A Willey-Interscience Publication (1992), 254 p.
Banaszczyk, W.: The Steinitz constant of the plane. J.Reine and Angew.Math.373 (1987) 218–220
Banaszczyk, W.: A note on the Steinitz constant of the Euclidean plane. C.R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 4, 97–102.
Beck, J., Fiala, T.: “Integer-making” theorems. Discrete Appl. Math. 3 (1981) 1–8
Behrend, F. A.: The Steinitz-Gross theorem on sums of vectors. Can. J. Math. 6 (1954) 108–124
Dvoretzky, A.: Problem. In: Proceedings of Symposia in Pure Mathematics, Vol.7 Convexity, Amer. Math. Soc., Providence, RI, (1963) p.496
Gross, W.: Bedingt Konvergente Reihen. Monatsh. Math. and Physik. 28 (1917) 221–237
Olson, J., Spencer, J.: Balancing families of sets. J. Comb. Theory (Ser. A) 25 (1978) 29–37
Sevastianov, S. V.: Asymptotical approach to some scheduling problems. (In Russian) Upravlyaemye Sistemy 14 (1975) 40–51
Sevastianov, S. V.: Approximate solution of some problems of scheduling theory. (In Russian) Metody Diskret. Analiz. 32 (1978) 66–75
Sevastianov, S. V.: On a connection between calendar-planning problem and one problem on the unit cube. (In Russian) Metody Diskret. Analiz. 35 (1980) 93–103
Sevastianov, S. V.: Approximate solution to a calendar-planning problem. (In Russian) Upravlyaemye Sistemy 20 (1980) 49–63
Sevastianov, S. V.: Approximation algorithms for Johnson's and vector summation problems. (In Russian) Upravlyaemye Sistemy 20 (1980) 64–73
Sevastianov, S. V.: Geometry in scheduling theory. (In Russian) In: Models and Methods of Optimization, Trudy Inst. Mat. 10 (Novosibirsk, 1988) 226–261
Steinitz, E.: Bedingt Konvergente Reihen und Convexe Systeme. J. Reine and Angew. Math. 143 (1913) 128–175
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sevastianov, S. (1997). Seven problems: So different yet close. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_34
Download citation
DOI: https://doi.org/10.1007/3-540-63397-9_34
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63397-6
Online ISBN: 978-3-540-69536-3
eBook Packages: Springer Book Archive