Skip to main content

Computing projective and permutation invariants of points and lines

  • Invariants
  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1296))

Included in the following conference series:

  • 175 Accesses

Abstract

Until very recently it was believed that visual tasks require camera calibration. More recently it has been shown that various visual or visually-guided robotics tasks may be carried out using only a projective representation characterized by the projective invariants. This paper studies different algebraic and geometric methods of computation of projective invariants of points and/or lines using only informations obtained by a pair of uncalibrated cameras. We develop combinations of those projective invariants which are insensitive to permutations of the geometric primitives of each of the basic configurations and test our methods on real data in the case of the six points configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Carlsson. Multiple image invariants using the double algebra. In J. Mundy and A. Zissermann, editors, Proceeding of the DARPA-ESPRIT workshop on Applications of Invariants in Computer Vision, Azores, Portugal, pages 335–350, October 1993.

    Google Scholar 

  2. G. Csurka. Modelisation projective des objets tridimensionnels en vision par ordinateur. These de doctorat, Université de Nice — Sophia Antipolis. April 1996.

    Google Scholar 

  3. G. Csurka and O. Faugeras. Computing three-dimensional projective invariants from a pair of images using the grassmann-cayley algebra. Image and Vision Computing, 1997. to appear.

    Google Scholar 

  4. P. Doubilet, G.C. Rota, and J. Stein. On the foundations of combinatorial theory: Ix combinatorial methods in invariant theory. Studies in Applied Mathematics, 53:185–216, 1974.

    Google Scholar 

  5. R. Hartley. Invariants of lines in space. In Proceedings of darpa Image Understanding Workshop, pages 737–744, 1993.

    Google Scholar 

  6. R. Hartley and P. Sturm. Triangulation. In Proceedings of arpa Image Understanding Workshop, Monterey, California, pages 957–966, November 1994.

    Google Scholar 

  7. R. Horaud, F. Dornaika, and B. Espiau. Visually guided object grasping. ieee Transactions on Robotics and Automation, 1997. submitted.

    Google Scholar 

  8. P. Meer, S. Ramakrishna, and R. Lenz. Correspondence of coplanar features through p 2-invariant representations. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, pages A 196 202, 1994.

    Google Scholar 

  9. L. Morin. Quelques contributions des invariants projectifs à la vision par ordinateur. Thèse de doctorat, Institut National Polytechnique de Grenoble, January 1993.

    Google Scholar 

  10. C. Rothwell, O. Faugeras, and G. Csurka. A comparison of projective reconstruction methods for pairs of views. Computer Vision and Image Understanding, 1997. to appear.

    Google Scholar 

  11. J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry. Oxford Science Publication, 1952.

    Google Scholar 

  12. U. Uenohara and T. Kanade. Geometric invariants for verification in 3-d object tracking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, volume II, pages 785–790, November 1996.

    Google Scholar 

  13. C. Zeller and O. Faugeras. Applications of non-metric vision to some visual guided tasks. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Kostas Daniilidis Josef Pauli

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Csurka, G., Faugeras, O. (1997). Computing projective and permutation invariants of points and lines. In: Sommer, G., Daniilidis, K., Pauli, J. (eds) Computer Analysis of Images and Patterns. CAIP 1997. Lecture Notes in Computer Science, vol 1296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63460-6_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-63460-6_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63460-7

  • Online ISBN: 978-3-540-69556-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics