Abstract
A method of the calculation of a discrete convolution via number-theoretic transforms realized without multiplications is described. It is shown that the data representation over algebraic fields allows to generalize the known Mersennse and Fermat transforms onto a wider set of periods of transformed sequences.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms. Springer. 1982
Schoenhage A., Strassen V.: Schnelle multiplikation grosser Zahlen. Computing. 7 (1966) 281–292
Rader C.M.: Discrete convolution via Mersenne transform. IEEE Trans. Comp. C-21 (1972) 1269–1273
Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley. 1985
Mc. Clellan, J.H., Rader, C.M.: Number Theory in Digital Signal Processing. Englewood Cliffs. New York. 1979
Dubois, E., Venetsanopoulos, A.N.: The generalized discrete Fourier transform in ring of algerbaic integers. IEEE Trans. ASSP-28. 2 (1980) 169–175
Alfredson, L.-I.: VLSI architectures and arithmetic operations with application to the Fermat number transform. Linköping Studies in Sci. and Technology. Dissertation No.425. (1996)
Boussakta, S., Holt, A.G.J.: Calculation of the discrete Hartley transform via Fermat number transform using VLSI chip. IEE Proc. 135 (1988) 101–103
Towers, P.J., Pajayakrit, A., Holt A.G.J.: Cascadable NMOS VLSI circuit for implementing a fast convolver using the Fermat number transform. 135 (1987) 57–66
Van der Waerden, B.L.: Algebra. 7th ed. Springer. 1966
Brillhart, J., Lehner, D.H., Selfridge, J.L., Tuckerman, B., Wagstass, S.S.: Factorizations of b n ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemporary Mathem. 22. 2nd ed. AMS. 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chernov, V.M., Pershina, M.V. (1997). “Error-free” calculation of the convolution using generalized Mersenne and Fermat transforms over algebraic fields. In: Sommer, G., Daniilidis, K., Pauli, J. (eds) Computer Analysis of Images and Patterns. CAIP 1997. Lecture Notes in Computer Science, vol 1296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63460-6_171
Download citation
DOI: https://doi.org/10.1007/3-540-63460-6_171
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63460-7
Online ISBN: 978-3-540-69556-1
eBook Packages: Springer Book Archive