Skip to main content

“Error-free” calculation of the convolution using generalized Mersenne and Fermat transforms over algebraic fields

  • Poster Session II
  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1296))

Included in the following conference series:

Abstract

A method of the calculation of a discrete convolution via number-theoretic transforms realized without multiplications is described. It is shown that the data representation over algebraic fields allows to generalize the known Mersennse and Fermat transforms onto a wider set of periods of transformed sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms. Springer. 1982

    Google Scholar 

  2. Schoenhage A., Strassen V.: Schnelle multiplikation grosser Zahlen. Computing. 7 (1966) 281–292

    Google Scholar 

  3. Rader C.M.: Discrete convolution via Mersenne transform. IEEE Trans. Comp. C-21 (1972) 1269–1273

    Google Scholar 

  4. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley. 1985

    Google Scholar 

  5. Mc. Clellan, J.H., Rader, C.M.: Number Theory in Digital Signal Processing. Englewood Cliffs. New York. 1979

    Google Scholar 

  6. Dubois, E., Venetsanopoulos, A.N.: The generalized discrete Fourier transform in ring of algerbaic integers. IEEE Trans. ASSP-28. 2 (1980) 169–175

    Google Scholar 

  7. Alfredson, L.-I.: VLSI architectures and arithmetic operations with application to the Fermat number transform. Linköping Studies in Sci. and Technology. Dissertation No.425. (1996)

    Google Scholar 

  8. Boussakta, S., Holt, A.G.J.: Calculation of the discrete Hartley transform via Fermat number transform using VLSI chip. IEE Proc. 135 (1988) 101–103

    Google Scholar 

  9. Towers, P.J., Pajayakrit, A., Holt A.G.J.: Cascadable NMOS VLSI circuit for implementing a fast convolver using the Fermat number transform. 135 (1987) 57–66

    Google Scholar 

  10. Van der Waerden, B.L.: Algebra. 7th ed. Springer. 1966

    Google Scholar 

  11. Brillhart, J., Lehner, D.H., Selfridge, J.L., Tuckerman, B., Wagstass, S.S.: Factorizations of b n ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemporary Mathem. 22. 2nd ed. AMS. 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Kostas Daniilidis Josef Pauli

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chernov, V.M., Pershina, M.V. (1997). “Error-free” calculation of the convolution using generalized Mersenne and Fermat transforms over algebraic fields. In: Sommer, G., Daniilidis, K., Pauli, J. (eds) Computer Analysis of Images and Patterns. CAIP 1997. Lecture Notes in Computer Science, vol 1296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63460-6_171

Download citation

  • DOI: https://doi.org/10.1007/3-540-63460-6_171

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63460-7

  • Online ISBN: 978-3-540-69556-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics