Skip to main content

Learning Logic programs with random classification noise

  • Theory
  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1314))

Included in the following conference series:

  • 129 Accesses

Abstract

We consider the learnability of classes of logic programs in the presence of noise, assuming that the label of each example is reversed with a fixed probability. We review the polynomial PAC learnability of nonrecursive, determinate, constant-depth Horn clauses in the presence of such noise. This result is extended to an analogous class of recursive logic programs that consist of a recursive clause, a base case clause, and ground background knowledge. Also, we show that arbitrary nonrecursive Horn clauses with forest background knowledge remain polynomially PAC learnable in the presence of noise. We point out that the sample size can be decreased by using dependencies among the literals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin and P. Laird.Learning from noisy examples. Machine Learning, 2(4):343–370, 1988.

    Google Scholar 

  2. J. A. Aslam and S. E. Decatur. Improved noise-tolerant learning and generalized statistical queries. Technical Report TR-17-94, Center for Research in Computing Technology, Division of Applied Sciences, Harvard University, 1994.

    Google Scholar 

  3. W. W. Cohen. Pac-learning recursive logic programs: efficient algorithms. J. AI Research, 2:501–539, 1995.

    Google Scholar 

  4. W. W. Cohen. Pac-learning recursive logic programs: negative results. J. AI Research, 2:541–573, 1995.

    Google Scholar 

  5. S. E. Decatur. Statistical queries and faulty PAC oracles. In Proc. 6th Annu. Workshop on Comput. Learning Theory, pages 262–268. ACM Press, New York, NY, 1993.

    Google Scholar 

  6. S. Dźeroski. Learning first-order clausal theories in the presence of noise. In Proc. 5th Scandinavian Conf. on Artificial Intelligence, Amsterdam, 1995. IOS Press.

    Google Scholar 

  7. S. Džeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic programs. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 128–135. ACM Press, New York, NY, 1992.

    Google Scholar 

  8. R. Gennaro. PAC-learning PROLOG clauses with or without errors. Tech. Memo 500, MIT Laboratory for Computer Science, 1994.

    Google Scholar 

  9. S. A. Goldman and R. H. Sloan.Can PAC learning algorithms tolerate random attribute noise? Algorithmica, 14:70–84, 19953.

    Google Scholar 

  10. W. Hoeffding. Probability inequalities for sums of bounded random variables. tJournal of the American Statistical Association, 58(301):13–30, Mar. 1963.

    Google Scholar 

  11. T. Horvith and G. Turin. Learning logic programs with structured background knowledge. In L. De Raedt, editor, 5th Int. Workshop on Inductive Logic Programming, pages 53–76, 1995. Also in Advances in Inductive Logic Programming (ed. L. De Raedt). IOS Press, 1996, pages 172-191. (IOS Frontiers in AI and Appl.).

    Google Scholar 

  12. M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 392–401. ACM Press, New York, NY, 1993.

    Google Scholar 

  13. M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM J. Comput., 22:807–837, 1993.

    Google Scholar 

  14. M. J. Kearns and U. V. Vazirani.An Introduction to Computational Learning Theory. The MIT Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

  15. N. Lavrać and S. Dźeroski. Inductive learning of relations from noisy examples. In S. H. Muggleton, editor, Inductive Logic Programming, pages 495–514, London, 1992. Academic Press.

    Google Scholar 

  16. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York, 1994.

    Google Scholar 

  17. N. Lavrač, S. Dieroski, and I. Bratko. Handling imperfect data in inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 48–64. IOS Press, 1996.

    Google Scholar 

  18. Y. Mansour and M. Parnas. On learning conjunctions with malicious noise. In Israel System and Theory Computer Symposium (ISTCS 96), 1996. (To appear).

    Google Scholar 

  19. S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

    Google Scholar 

  20. G. Shackelford and D. Volper. Learning k-DNF with noise in the attributes. In Proc. 1st Annu. Workshop on Comput. Learning Theory, pages 97–103, San Mateo, CA, 1988. Morgan Kaufmann.

    Google Scholar 

  21. R. H. Sloan. Four types of noise in data for PAC learning. Inf. Process. Lett., 54:157–162, 1995.

    Google Scholar 

  22. A. Srinivasan, S. H. Muggleton, and M. Bain. Distinguishing exceptions from noise in non-monotonic learning. In Proc. Second International Workshop on Inductive Logic Programming, Tokyo, Japan, 1992. ICOT TM-1182.

    Google Scholar 

  23. L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the 9th International Joint Conference on Artificial Intelligence, vol. 1, pages 560–566, Los Angeles, California, 1985. International Joint Committee for Artificial Intelligence.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Muggleton

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, T., Sloan, R.H., Turán, G. (1997). Learning Logic programs with random classification noise. In: Muggleton, S. (eds) Inductive Logic Programming. ILP 1996. Lecture Notes in Computer Science, vol 1314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63494-0_63

Download citation

  • DOI: https://doi.org/10.1007/3-540-63494-0_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63494-2

  • Online ISBN: 978-3-540-69583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics